AFGL-TR-78-0081

FASCODE - FAST ATMOSPHERIC SIGNATURE CODE (SPECTRAL TRANSMITTANCE AND RADIANCE)

H.J.P. Smith

D.J. Dube

M.E. Gardner

S.A. Clough

F.X. Kneizys

L.S. Rothman

Visidyne, Inc. 19 Third Avenue Burlington, Massachusetts 01803

Scientific Report No. 2

16 January 1978

Approved for public release; distribution unlimited.

AIR FORCE GEOPHYSICS LABORATORY AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE HANSOOM AFB, MASSACHUSETTS 01731

FILE GOV

Qualified requestors may obtain additional copies from the Defense Documentation Center. All others should apply to the National Technical Information Service.

SECURITY SCASSIFICATION OF THIS PAGE (When Date Intered)	READ INSTRUCTIONS
(19) REPORT DOCUMENTATION PAGE	BEFORE COMPLETING FORM
2. GOVT ACCESSION	NO. 3. RECIPIENT'S CATALOG NUMBER
AFGL/TR-78-AH81	
TIELE (and debutte)	A THE OF REPORT STORMER COVERE
> FASCODE - FAST ATMOSPHERIC SIGNATURE CODE /	Scientific factor 1/2//
(Spectral Transmittance and Radiance),	TRESPUNG ORG. PROST NUMBER
The second secon	1/13 VI-409 V
7. AUTHOREAL	LEGILLALOS ON CHANT HUMBENTO)
(S.A./Clought of	15) F19628-77-C-8641
r.x./kneizyst)	730 713020-77-0-0041
M.E./Gardner, L.S. Rotimant	
Videddung Too	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Visidyne, Inc. 19 Third Avenue	62101F 61102F
Burlington, Massachusetts 01803	7678 23186103
11. CONTROLLING OFFICE NAME AND AUDRESS	/ US. REPORT DATE
Air Force Geophysics Laboratory (OPI) (/	16 January 1078
Hanscom AFB, Massachusetts 01731	TO: NUMBER OF PAUCS
Contract Monitor: Francis X. Kneizys/OPI	149 18. SECURITY CLASS. (of this report)
A CONTRACTOR OF THE CONTRACTOR	re) 16. SECURITY CLASS. (Of Inte report)
(12) 1920. (11) 065	UNCLASSIFIED
1 Car	154. DECLASSIFICATION/DOWNGRADING
1.	Jeneoole
Approved for public release; distribution unl	imited.
Approved for public release; distribution unl	
Approved for public release; distribution unl	
Approved for public release; distribution unl 17. DISTRIBUTION STATEMENT (of the observed entered in Block 20, 11 different 18. SUPPLEMENTARY NOTES TAIR Force Geophysics Laboratory (OPI)	nt from Report)
Approved for public release; distribution unl 17. DISTRIBUTION STATEMENT (of the observed entered in Block 20, 11 different 18. SUPPLEMENTARY NOTES †Air Force Geophysics Laboratory (OPI)	nker) on, line-by-line calculations
Approved for public release; distribution unl 17. DISTRIBUTION STATEMENT (of the ebetract entered in Block 20, 11 different 18. SUPPLEMENTARY NOTES TAIr Force Geophysics Laboratory (OPI) 19. KEY WORDS (Continue on reverse side if necessary and identify by block number of transmission, equilibrium radiation line shape profiles, Voigt provile, Lorentz proconvolution techniques	nter) on, line-by-line calculations rofile, Doppler profile,
Approved for public release; distribution unl 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, 11 different 18. SUPPLEMENTARY NOTES TAIr Force Geophysics Laboratory (OPI) 19. KEY WORDS (Continue on reverse alde 11 necessary and identify by block number of the shape profiles, Voigt provile, Lorentz profiles, Lorentz profiles, Voigt provile, Lorentz profiles, Lorentz profiles, Voigt provile, Lorentz profiles, Lorentz profi	on, line-by-line calculations rofile, Doppler profile, a rapid running line-by-line ayered atmosphere. In addiated assuming local thermo-ofile is used for the general

390862781408014

TABLE OF CONTENTS

SECTION		PAGE		
1	INTRODUCTION			
2	LINE SHAPE - VOIGT PROFILE			
3	TRANSMITTANCE THROUGH THE REAL LAYERED ATMOSPHERE			
4	RADIANCE FROM AN ATMOSPHERE IN LOCAL THERMODYNAMIC EQUILIBRIUM			
5	CONCLUSIONS AND RECOMMENDED EXTENSIONS OF THE PROGRAM	59		
	REFERENCES	65		
	APPENDIX A - CODE STRUCTURE AND DESCRIPTION	6 7		
	APPENDIX B - USER'S GUIDE	87		
	APPENDIX C - PROGRAM LISTING	111		
	LIST OF TABLES			
TABLE				
3.1	ALLOWED RATIOS AND SCHEMES	37		
3.2	ATMOSPHERIC LAYERS USED IN THE COMPUTATIONS OF KYLE	40		
3.3	ATMOSPHERIC LAYERS USED IN TEST PROBLEM	41		
4.1	TIMING RESULTS FOR THE TEST PROBLEM	57		
A.1	FILES USAGE	69		
B.1	LOCATION OF BUFFER STATEMENTS	89		
B.2	SAMPLE RUN DECK FOR TEST PROBLEM	90		
B.3	INPUT DATA DESCRIPTION	91		
B.4	LOAD MAP	93		
B.5	TEST CASE OUTPUT ACCESSION for	99		

· Jan de die des autorites

LIST OF FIGURES

FIGURE NUMBER		PAGE
1.1	Decomposition of the Lorentz Function into Three Domains	9
1.2	Four Functions Used to Reconstruct the Voigt Function	10
2.1	Plot of a_{VD} vs c (0.0 $\leq c \leq$ 0.5)	18
2.2	Plot of a_{VL} vs ζ (0.5 $\leq \zeta \leq 1.0$)	19
2.3	Plot of Least Squared Fit Parameter, $C(\zeta)$ vs ζ	23
2.4	Voigt Line Shape Profile for $\zeta = 0$.	24
2.5	Voigt Line Shape Profile for $\zeta = 0.050$	25
2,6	Voigt Line Shape Profile for $\zeta = 0.200$	26
2.7	Voigt Line Shape Profile for $\zeta = 0.600$	27
2.8	Voigt Line Shape Profile for $\zeta = 1.000$	28
4.1	Sketch of the Difference Between a Path Looking Up and One Looking Down	44
4.2a	Transmittance and Radiance for the Test Problem (1995-2055 cm ⁻¹)	50
4.2b	Transmittance and Radiance for the Test Problem (2045-2105 cm^{-1})	51
4.2c	Transmittance and Radiance for the Test Problem (2095-2155 cm-1)	52
4.2d	Transmittance and Radiance for the Test Problem (2145-2205 cm^{-1})	53
4.2e	Transmittance and Radiance for the Test Problem (2060-2065 cm-1)	54
4.2f	Transmittance and Radiance for the Test Problem With an Expanded Scale (2075-2080 cm-1)	55
5.1	Sketch of Tangent Path Satellite Viewing Geometry	62
A.1	FASCODE Overall Structure	71
A.2	Flow Diagram for SHRROHTINE HIRACV	

LIST OF FIGURES

FIGURE NUMBER		PAGE
A.3	Flow Diagram for SUBROUTINE CONVENY	77
A.4	Flow Diagram for SUBRCUTINE PANEL	78
A.5	Flow Diagram for SUBROUTINE ABSMRG	81
A.6	Flow Diagram for SUBROUTINE EMINIT	82
A.7	Flow Diagram for SUBROUTINES EMUP, EMDOWN	85

1.0 INTRODUCTION

The problem of atmospheric transmission of infrared and visible radiation is of considerable interest from both a purely scientific and a practical point of view. The study of radiative transfer in an atmosphere involves a large number of physical and chemical effects and their proper theoretical treatment requires an increasing degree of mathematical sophistication. The vast amount of physical data necessary for a detailed description is typified by the AFGL line atlas which forms the core of the AFGL HITRAN Research Program^[1]. Uses of this data include laboratory studies of absorption, computing data for comparison or design of field observations of the atmosphere as well as such applications as the design of remote sensing or laser communication systems.

In the design and simulation of such systems, the atmospheric transmission in a given wave number interval can be a crucial consideration. For systems with relatively coarse spectral resolution, the detailed spectral structure of the absorption is not required. Thus, for such systems a high resolution technique for study and simulation may not be necessary and one may profitably use lower resolution codes such as the AFGL LOWTRAN Program^[2], but even in applied work a high degree of spectral resolution is increasingly in demand.

A number of line-by-line calculational methods have been reported which provide as detailed a spectral resolution as computationally possible. Among these may be found the LBL Program which has come to be know as the HITRAN Code^[1]. This method uses the AFGL line atlas and convolves all lines contributing to a given wave number to within a prescribed wave number range using a Lorentz line shape profile. The large number of calculations which the LBL Program performs requires a large amount of computer time which makes parametric studies as well as wide-band computations prohibitively expensive. Thus this code tends to be used for very necessary high resolution work and also as a tool to improve lower resolution models such as LOWTRAN.

With the growing demand for high resolution work, an effort was undertaken at AFGL to improve the efficiency of line-by-line calculations. The initial phase of this work resulted in the development of the HIRACC

algorithm for the convolution of Lorentz line shapes within 48 half-widths of a given wave number for a constant atmospheric temperature, density and composition. This extremely efficient algorithm resulted in a decreased running time of somewhat more than an order of magnitude as compared to the corresponding pairts of the LBL Code. The HIRACC algorithm has been fully documented in an earlier report^[3] and we shall assume in the current report that the reader is familiar with Reference [3].

At this point it would be helpful to the reader to summarize the main features of the HIRACC algorithm which combine to give effectively an order of magnitude decrease in computational time. The first step in the development of HIRACC involved the decomposition of the line shape profile into three sub-profiles with different spectral widths. The algorithm was developed for a pure Lorentz line shape and the line shape profile was cut off beyond 48 half-widths from the line center. FASCODE (Fast Atmospheric Signature Code), however, was designed to use a Voigt profile. In order to accomplish this it was found convenient to extend the cut-off of the profiles to 64 half-widths. This enabled the definition of only one new sub-profile, a Gaussian function representing the Doppler contribution out to 4 half-widths. Note that beyond this number of half-widths the Doppler broadening may be neglected. The Voigt profile is then approximated by an appropriate combination of four functions. Figures 1.1 and 1.2 illustrate the resulting decomposition.

This decomposition has the advantage that the rapid variation of the profile near the line center can be represented properly by a specified sampling interval and the more slowly varying portion as one approaches the wings of the line can be properly represented with a larger increment between the points. In addition, the results of the four separate convolutions are not put together until the contributions from all the lines in the region are complete. An interpolation scheme was developed to compute those values required between the numerical values. Details are given in Section 2.

Another important result of Reference [3] was the determination of a criterion for the optimum sampling interval. A sampling interval which gives results to ~ 0.1 percent was shown to be given by

 $\Delta v \simeq \alpha/4 \tag{1.1}$

Decomposition of the Lorentz Function into Three Domains: -4 to 4 Half-Widths, -16 to 16 Half-Widths and -54 to 64 Half-Widths. The Sum of The Three Functions Gives $L(z) \approx (1/\pi)(1/1 + z^2)$. Only values to ± 32 half-widths are shown in the figure. Figure 1.1:

Figure 1.2: Four functions used to reconstruct the Yoigt function.

0.49

0.22

11.0

where α is the average half-width of a line over the region of interest. It was also shown that the gain G obtained by the decomposition method over computing the entire line shape at a given sampling interval is given by the relation

$$G = N_{TOT} / \left[\sum_{m=1}^{M} N_{M} (\delta x_{1} / \delta x_{m}) \right]$$
 (1.2)

In this expression, N_{TOT} is the total number of half-widths over which the profile is required, N_m is the number of half-widths spanned by the mth decomposed function and $(\delta x_1/\delta x_m)$ is the ratio of the sampling interval for the first function to that required for the mth function. For the decomposition utilized in this report, this yields a theoretical gain of 5 1/3.

We also point out another feature, namely that for a given spectral interval (v_1-v_2) which contains N lines, the same number of operations per line are performed for the sampling interval chosen according to the criterion. This implies that the convolution of a spectral absorptance for a given spectral interval will always take the same amount of computational time per line for high altitude layers where the lines are narrow as it does for lower layers where the lines may be broadened considerably. This feature is borne out by our results.

The HIRACC algorithm has been used to develop a multilayer transmission and radiance code which has been called FASCODE standing for Fast Atmospheric Signature Code. In the course of producing this code the basic HIRACC algorithm has been left intact, but several peripheral modifications have been implemented. In order to provide the capability of calculating at higher altitudes where the Lorentz profile is no longer appropriate, a Voigt line shape version has been developed with the additional feature that calculations are performed out to 64 half-widths. One of the great advantages of the HIRACC technique is that the line profile may be changed readily with only a small change in running time. The Voigt line shape profile is described in Section 2 of this report. We note in passing that purely Lorentz or purely Doppler versions of FASCODE may easily be implemented for the user whose application is in these domains. We emphasize, however, that no real penalty in running time will be paid by a user who exercises the Voigt version in either

of these altitude domains.

As mentioned above, the HIRACC algorithm for absorption was developed for a uniform atmospheric path (temperature, pressure and absorber concentration). The application of this method to the real atmosphere was made by approximating the real atmosphere by a series of layers with constant parameters in each layer. The results for each layer are then merged with the absorption coefficient obtained up to that layer. The merging algorithms are described in detail in Section 3 of this report.

Assuming local thermodynamic equilibrium, the absorption of radiation by a given volume of gas implies the re-emission of an equal amount of energy. Using this idea one may "invert" a transmission calculation to obtain the radiance from the gas along the given path. This type of calculation has been provided as an option in FASCODE to enable the user to calculate the radiance due to the atmsophere itself. For the user who has a boundary at one end of his path, a provision has been made to allow the user to add his own surface radiance model. Currently this takes the form of a black body radiating at a given temperature at the low end of a path starting in space and looking down. This could be easily modified if a different spectral radiance is required. This part of FASCODE is described in Section 4.

In Section 5, we present some avenues for future efforts and summarize the status of this effort. A series of appendices gives an overview of the FASCODE structure as well as complete documentation of the new routines involved. One of these appendices provides a User's Manual for some sample inputs and outputs.

2.0 LINE SHAPE - VOIGT PROFILE

To calculate spectral absorption contours for the types of absorbing paths encountered in the atmosphere, extensive consideration must be given to the spectral line shape. For atmospheric paths at lower altitudes, the spectral line shape within ~5 cm⁻¹ of the line center is given satisfactorily by the pressure broadened (Lorentz) shape. Beyond ~5 cm⁻¹ it has been shown that the shape is dependent on molecular type as has been discussed by Burch^[4]. Winters et al^[5] and Clough et al^[3]. At high altitudes (low pressure) the line shape is due to thermal motion resulting in the Doppler line profile. The alcitude above which the Doppler shape is valid is dependent on the wave number of the transition, the temperature and the molecular species. Between the domains for which the Lorentz shape and the Doppler shape are valid, the Voigt line shape must be utilized. Although the Voigt profile was originally derived for the case where broadening was due to natural broadening and thermal motion broadening, it is applicable in the present situation, since the shape function is the same for natural as for pressure broadening. This development uses an approximate method for the Voigt profile that is sufficiently accurate for most atmospheric problems and requires substantially reduced computer time compared to previously described methods.

The absorption coefficient for a pressure broadened line, $A_L(v)$, as a function of the wave number value of the radiation field, v, the transition wave number, v_0 , intensity S and half-width, α_L , (half-width at half maximum: HWHM) is given by the Lorentz function,

$$A_{L}(v) = \frac{S}{\pi} \frac{\alpha_{L}}{\alpha_{L}^{2} + (v - v_{o})^{2}}$$
 (2.1)

The pressure broadened half-width, α_L , is a function of the absorbing and broadening molecule types and the vibratibnal-rotational states involved in the transition. The theory that has proven useful for calculating pressure broadened half-widths is due to Anderson^[6], as implemented by Tsao and Curnutte^[7]. The variation of the half-width with temperature

and pressure is given by the relationship

$$\alpha_L(P,T) = \alpha_L(P_0, T_0) \left(\frac{P}{P_0}\right) \left(\frac{T_0}{T}\right)^{X_T}$$
 (2.2)

The half-widths on the AFGL line compilation are for $P_0=1$ atm. $T_0=296^{\circ}K$ and are typically of the order of 0.08 cm⁻¹/atm. The simplest theoretical result for the temperature dependence of the half-width gives $X_T=0.5$. Recent calculations and experiments indicate that a higher value of X_T is more appropriate, $\lambda_T \approx 0.75$ (Benedict)^[8]. The absorption coefficient for a line broadened by thermal motion is given by the Gaussian function in terms of the Doppler width, α_D , (HWHM) as

$$A_0(v) = \sqrt{\frac{2n2}{\pi}} \frac{s}{s} \exp \left[-(2n2) \left(\frac{v - v_0}{s} \right)^2 \right]$$
 (2.3)

where

$$\alpha_{\rm D} = \frac{v_{\rm O}}{c} \left(\frac{2 \ln 2 kT}{(N/N_{\rm O})} \right)^{1/2} \tag{2.4}$$

For the half-width, α_D , to be given in cm⁻¹ at temperature T(*K), c is the velocity of light in cm/sec, k is the Boltzmann factor in erg/deg, N_O is Avogadro's number, and M is the molecular weight of the molecule type in gr.

Both functions have been defined such that the functional value at one half-width from the line center is one-half the function value at the line center, that is

$$\frac{A(v_0 \pm a)}{A(v_0)} = \frac{1}{2} \tag{2.5}$$

It is also important that the integral of both functions yields the line strength, that is

$$S = \int_{-\infty}^{\infty} A(v) dv$$
 (2.6)

For the purposes of this development, and in order to utilize the algorithm developed by Clough et al $^{\{3\}}$, it will be useful to define a dimensionless argument for the line profiles,

$$z = \frac{v - v_0}{\alpha} \tag{2.7}$$

so that the Lorentz profile is given by

$$A_{L}(z) = \frac{1}{\pi} \frac{S}{\alpha_{L}} \frac{1}{1+z^{2}} \text{ with } z = \frac{v - v_{0}}{\alpha_{L}}$$
 (2.8)

and the Doppler profile is given by

$$A_{D}(z) = \sqrt{\frac{\ln 2}{\pi}} \frac{S}{\alpha_{D}} \exp \left[-(\ln 2) z^{2}\right] \text{ with } z \equiv \frac{v - v_{O}}{\alpha_{D}}$$
 (2.9)

The integral and half-width properties take on the following form

$$S = \int_{-\infty}^{\infty} A(z) \alpha dz \qquad (2.10)$$

and

$$\frac{A\left(z=\frac{1}{2}\right)}{A\left(z=0\right)} = \frac{1}{2} \tag{2.11}$$

Several excellent programs have been written to calculate the Voigt line profile which may be regarded as the convolution of the Lorentz function

with the Gaussian function (J.H. Pierluissi, P.C. Vanderwood and R.B. Gomez^[9]; S.R. Drayson^[10] and B.H. Armstrong^[11]). For the application of performing line-by-line calculations for a multi-layered atmosphere involving large numbers of spectral lines, these methods require a prohibitive amount of computational time and provide more accuracy than is generally required for such problems. Approximations for the computation of the Voigt profile have been suggested by Whiting^[12] and Kielkopf^[13]. The method described in the latter two papers involves approximating the Voigt function by a weighted sum of the Doppler and Lorentz functions. It is an extension of this approach that we have utilized in this development.

The starting point for our approximation to the Voigt function is the definition of a Voigt parameter that is simply calculable and is well behaved in the Lorentz and Doppler limits. For a spectral transition with a Doppler width, α_D , and a Lorentz width, α_L , we define a Voigt parameter, ζ , where

$$\zeta = \frac{\alpha_L}{\alpha_L + \alpha_D} \tag{2.12}$$

In the Lorentz and Doppler limits respectively we have,

$$\zeta = 0$$
 $\alpha_i \ll \alpha_D$ (Doppler Limit) (2.13)

and

$$\zeta = 1$$
 $\alpha_i >> \alpha_D$ (Lorentz Limit) (2.14)

The definition of a Yoigt half-width, α_{V} , is now required to proceed with our program. This definition is made consistent with the definition of the half-width for the Doppler and Lorentz functions; it is the half-width at half-maximum of the Voigt function. An excellent approximation has been given by Kielkopf in terms of the Lorentz and Doppler widths,

$$\alpha_{V} = \frac{\alpha_{L}}{2} \left(1 + \epsilon \right) + \left[\frac{\alpha_{L}^{2} \left(1 - \epsilon \right)^{2}}{4} + \alpha_{D}^{2} \right]^{1/2}$$
(2.15)

with ε = 0.0990 ln2.

In order to utilize this expression in terms of ζ , it is necessary to consider the determination of α_v in two domains of ζ :

$$\alpha_{v} = a_{VD}(\zeta) \cdot \alpha_{D} \quad 0.0 \le \zeta \le 0.5 \quad \text{(Doppler Regime)}$$
 (2.16)

and

$$\alpha_{V} = a_{VL}(\zeta) \cdot \alpha_{L} \quad 0.5 \le \zeta \le 1.0 \quad \text{(Lorentz Regime)}$$
 (2.17)

The quantities, $a_{VD}(\zeta)$, and $a_{VL}(\zeta)$, may be obtained from Equation (2.15) in terms of ζ as

$$a_{VD}(\zeta) = \frac{\alpha_{V}}{\alpha_{D}} = \left(\frac{1+\varepsilon}{2}\right) \left(\frac{\zeta}{1-\zeta}\right) + \left[\left(\frac{1-\varepsilon}{2}\right)^{2} \left(\frac{\zeta}{1-\zeta}\right)^{2} + 1\right]^{1/2}$$

$$0. \leq \zeta \leq 0.5$$
(2.18)

and

$$a_{VL}(\zeta) = \frac{\alpha_{V}}{\alpha_{L}} = \left(\frac{1+\varepsilon}{2}\right) + \left[\left(\frac{1-\varepsilon}{2}\right)^{2} + \left(\frac{1-\zeta}{\zeta}\right)^{2}\right]^{1/2}$$

$$0.5 \leq \zeta \leq 1.0$$
(2.19)

The largest error in the determination of the Voigt half-width using Equation (2.15) is \sim 0.02%. Values of a_{VD} with 0.0 $\leq \zeta \leq$ 0.5 and for $a_{VL}(\zeta)$ with 0.5 $\leq \zeta \leq$ 1. using Equations (2.18) and (2.19) are determined for equally spaced values of ζ separated by 0.005. Plots of a_{VD} and a_{VL} as a function ζ appear in Figure 2.1 and Figure 2.2 respectively. This error is not as great as that incurred in using values of a_{VD} and a_{VL} at discrete values of ζ for

Figure 2.1: Plot of a_{VD} Vs. ζ (0.0 $\leq \zeta \leq$ 0.5)

Figure 2.2: Plot of a_{VL} Vs. ζ (0.5 $\leq \zeta \leq$ 1.0).

values of ζ intermediate to those tabulated. For most physical problems, the errors involved in the present method of determining α_{V} , are less than the errors in the values of α_{D} and α_{L} themselves. If it is desired to have more accurate values of α_{VD} and α_{VL} , the Voigt program of Armstrong can be utilized in an iterative procedure. In general, only one iteration is required to give a high degree of accuracy.

The Voigt function may now be approximated as a weighted sum of Doppler and Lorentz functions of width, $\alpha_{_{U}}$,

$$A_{V}(\zeta, \alpha_{V}, Z) = (1 - C(\zeta)) A_{D}(\alpha_{V}, Z) + C(\zeta) A_{L}(\alpha_{V}, Z)$$
 (2.20)

with $Z = (v - v_0)/\alpha_v$

This definition preserves the integral property defined: that the integral over Z gives back the line strength, S, since $C(\zeta)$ is independent of Z and the two functions, A_D and A_L , are themselves normalized to the line strength. Consider

$$\int_{-\infty}^{\infty} A_{V}(\zeta, \alpha_{V}, Z) dZ = (1 - C(\zeta)) \int_{-\infty}^{\infty} A_{D}(\alpha_{V}, Z) \alpha_{V} dZ$$

$$+ C(\zeta) \int_{-\infty}^{\infty} A_{L}(\alpha_{V}, Z) \alpha_{V} dZ,$$
(2.21)

and

$$= (1 - C(\zeta)) S + C(\zeta)S$$
 (2.22)

so that

The remaining problem is the determination of the weighting constant, $C(\zeta)$. In References [12] and [13] analytic functions have been given for the constant $C(\zeta)$ as a function of Voigt parameter. The difficulty with the pro-edure outlined there is the large number of operations required to attain $C(\zeta)$ from the analytic expressions given. The most straightforward way to proceed is to determine the numerical function $C(\zeta)$ for the same 201 values of ζ used to determine the Voigt width. Rather than using the analytic expressions given in References [12] and [13] a least squares procedure has been used to determine $C(\zeta)$ by minimizing the weighted sum of the deviations squared, σ^2 , as obtained from Equation (2.20).

$$\sigma^{2} = \sum_{i} W_{i} \left\{ C(\zeta) \left[A_{L} (\alpha_{V}, Z_{1}) - A_{D} (\alpha_{V}, Z_{1}) \right] - \left[A_{V} (\zeta, \alpha_{V}, Z_{1}) - A_{D} (\alpha_{V}, Z_{1}) \right] \right\}^{2}$$

$$- \left[A_{V} (\zeta, \alpha_{V}, Z_{1}) - A_{D} (\alpha_{V}, Z_{1}) \right] \right\}^{2}$$
(2.24)

All the quantities have been defined except the weighting function W_{ij} and the grid of points represented by Z_{ij} . Some experience indicated that the weighting scheme which presented the best compromise between error in the central portion of the line profile and the line wing was obtained by setting the weight to the inverse of the Voigt value, that is

$$W_{i} = 1/A_{i}(\zeta, \alpha_{i}, Z_{i})$$
 (2.25)

A more obvious choice would have weighted the deviations inversely as the square of the Voigt value to maintain nearly constant percent error across the line profile. It was deemed more important to maintain a smaller percent error for the larger values of the function near the center of the line. The points were chosen at equally spaced intervals over three different domains for reasons that will be discussed later. The grid was chosen as follows:

$$i = 1.19$$
 $Z_{1} = 0, Z_{2} = 0.25, \dots, Z_{19} = 4.0$
 $i = 20, 30$ $Z_{20} = 5.0, Z_{21} = 6.0, \dots, Z_{30} = 16.0$
 $i = 31, 41$ $Z_{31} = 20., Z_{32} = 24., \dots, Z_{41} = 64.0$

The results obtained for the constant, $C(\zeta)$, are shown in Figure 2.3 as a function of ζ . The values are determined at the same 201 values of ζ in Figures 2.4 through 2.8. The continuous curves are the result of the Armstrong Voigt program and the x's are the values obtained from the least squares procedure. For $\zeta=0$ and $\zeta=1$ the Voigt function is exactly reproduced as a required result of the method. The results are given on a logarithmic plot in order to give perspective to the value of the function for which the percent errors are the largest. For $\zeta=0.05$ to $\zeta=0.3$, the percent error in the wing is of the order of 22 percent, but these errors occur for very small values of the function. Another region of moderate percent error is at $Z \approx 3$ half-widths for this same range of zeta. The largest percent error in this domain is $\sim 8\%$ for zeta ≈ 0.2 .

As indicated earlier, these results are sufficiently accurate for most atmospheric applications. As suggested by both Whiting $^{[12]}$ and Kielkopf $^{[13]}$, an error function can be added to reduce this remaining discrepancy to negligible proportions. Some discussion of this will appear in a subsequent section.

The method for approximating the Voigt profile has been developed and this development must now be incorporated into the algorithm for computing spectral absorption coefficients outlined by Clough et al $^{[3]}$. The Voigt function has been obtained as a weighted sum of the Doppler function and the Lorentz function. For jurposes of convolving the approximate Voigt profile with the spectral line data, we consider Equations (2.8) and (2.9). In Reference [3] the slow convergence of $A_L(z)$ has been discussed and a method was developed to reduce computational effort for performing the convolution. Fortunately, the Doppler shape has very rapid convergence to zero as a function of the argument, z. The domain of the argument, z, for which values of the Function $A_D(z)$ need to be considered are limited to |z| less

Figure 2.3: Plot of Least Squares Fit Parameter, C(z) Vs. z.

Figure 2.4: Voigt Line Shape Profile for $\zeta = 0$.

Figure 2.5: Voigt Line Shape Profile for $\zeta = 0.050$

Figure 2.6: Voigt Line Shape Profile for $\zeta = 0.200$.

Figure 2.7: Voigt Line Shape Profile for $\zeta = 0.600$.

Figure 2.8: Voigt Line Shape Profile for $\zeta = 1.000$.

than four $(|z| \le 4)$, noting that A_D $(z = 4) = 7.7 \times 10^{-6}$. The normalized function for the Doppler line profile is given by

$$G(z) = \sqrt{\frac{2n2}{\pi}} \exp\left[-(2n2)z^{2}\right] \qquad (2.27)$$

It then is appropriate to decompose the Lorentz function $A_{\underline{L}}(z)$ into three domains of z,

$$0 \le z \le 16$$

and

$$0 < z < 64 \tag{2.28}$$

This decomposition is performed in a manner similar to that described in Reference [3]. A quartic function is defined over the domain $0 \le z \le 4$ where

$$Q_1 = \frac{1}{\pi} (a_1 + b_1 z^2 + c_1 z^4)$$
 (2.29)

The normalized Lorentz function, L, is

$$L = \frac{1}{\pi} \frac{1}{1 + r^2} . \tag{2.30}$$

The coefficients of the quartic are chosen such that for the function $(L-Q_1)$, the value and the first and the second derivative are zero at the boundary, Z_b . For the first function, $Z_b = Z_1 = 4$. These constraints are achieved by the following relations

$$a_1^{=} (1 + 3 z_b^2 + 3 z_b^4)/(1 + z_b^2)$$
 (2.31)

$$b_1 = -(1 + 3 Z_b^2)/(1 + Z_b^2)^3$$
 (2.32)

and

$$c_1 = 1/(1 + Z_b^2)^3$$
 (2.33)

Similarly, a second quartic function, Q_2 is defined such that for function $(L-Q_2)$, the value, the first and second derivative are zero at the bound ary $Z_b = Z_2$. In this case $Z_b = Z_2 = 16$. In the region from $16 \le |Z| \le 6^{\delta}$ the function utilized is the Lorentz function itself. The procedure is more obvious in tabular form:

		DOMAIN		
Function	$0 \le Z \le 4$		$0 \le Z \le 16$	0 <u>< Z < 64</u>
		(Doppler)		
X _D (z)	G(z)		0	0
		(Lorentz)		
X _{L1} (z)	$L(z) - Q_1(z)$		0	0
X _{L2} (z)	$Q_1(z) - Q_2(z)$		$L(z) - Q_2(z)$	0
X _{L3} (z)	Q ₂ (z)		0 ₂ (z)	L(z)

Note that the Doppler function spans the same domain as the first decomposed Lorentz function, that the functions X_{Li} sum to L(z) in each domain and that the functions are continuous across the domain boundaries.

The four functions that will be utilized to reconstruct the Voigt function are shown in Figure 1.2. The functions are tabulated at 201 values of the argument |z| over the domain valid for each function.

The total expression for approximating the absorption due to the Voigt profile is given by

$$A_{V}(z, \alpha_{V}, z) = \frac{s}{\alpha_{V}} \left\{ \left(1 - C(z) \right) X_{D}(z) + C(z) \left[X_{L1}(z) + X_{L2}(z) + X_{L3}(z) \right] \right\}$$
(2.34)

This may be separated into three functions where

$$A_{v1}(\zeta, \alpha_{v}, z) = \frac{S}{\alpha_{v}} \left\{ (1 - C(\zeta)) X_{D}(z) + C(\zeta) X_{L1}(z) \right\} 0 \le |z| \le 4,$$

$$A_{v2}(\zeta, \alpha_{v}, z) = \frac{S}{\alpha_{v}} C(\zeta) X_{L2}(z) \qquad 0 \le |z| \le 16,$$

$$A_{v3}(\zeta, \alpha_{v}, z) = \frac{S}{\alpha_{v}} C(\zeta) X_{L3}(z) \qquad 0 \le |z| \le 64.$$
(2.35)

The sampling interval established in Reference [3] i dicates that A_{V1} is sampled at intervals of $\frac{\alpha_V}{4}$, A_{V2} at intervals α_V , and A_{V3} at intervals of $4 \cdot \alpha_V$. This sampling scheme results in each function being sampled at 33 values. The results of the convolutions over the three domains are stored in arrays FF, SF and VSF. The saving in computational effort results from two principal reasons. Only 99 values are required to describe the Voigt function over \pm 64 half-widths. The composite spectrum from the three arrays (FF, SF, and VSF) is constructed only after the convolutions have been completed for all the lines in a given spectral interval. This latter point is one that was not sufficiently stressed in Reference [3]. The implication of this technique is that not only is the grid of the function fine in the region where the function is varying rapidly and coarse in the region where the function is varying slowly (actually there are three discrete sampling intervals), but that the values for intermediate points are not calculated until after the contributions from all the spectral lines have

been determined. This is achieved by interpolating the VSF array into the SF array, and the SF array into the FF array yielding the final results.

3.0 TRANSMISSION THROUGH THE REAL LAYERED ATMOSPHERE

The HIRACC algorithm^[3] as originally reported by Clough et al computed absorption coefficients for a given path through a gas. The thermodynamic properties over this path were assumed to be constant which enabled the definition of a constant sampling interval over the spectral region of interest. The path itself was defined through input in the form of column densities of the appropriate molecular absorbers together with the temperature and pressure. We note that column densities are the required units for the AFGL tape.

At first glance, it might appear that calculations of the spectral absorptance (or optical depth) in the real atmosphere would require only the definition of the proper values of these column densities. However, one must take into account the variation of thermodynamic properties along the path as well as the fact that certain absorber molecules, such as H₂O and O₂ are not uniformly mixed at all altitudes. For example, ozone concentration peaks in the stratosphere. When a calculation of the optical depth at a higher altitude is required, one must take into account the fact that the decreased pressure implies a narrower line width. Indeed, as one goes from sea level toward space, the line shape profile passes from almost pure Lorentz to pure Doppler. If one uses an improper sampling interval to calculate the spectral absorptance, it is clear that important absorption features can easily be neglected, thus yielding incorrect results. Therefore a proper calculation of absorption over a path traversing a large region of the atmosphere will require an appropriate variation of the sampling interval with altitude. One could, of course, use the small sampling interval required at high altitude layers for all layers, but this would require unnecessary calculations at the lower altitudes.

In order to use the HIRACC algorithm with as little modification as possible, we have taken the approach discussed by McClatchey et al^[14] and approximated the real atmosphere by a series of layers, each defined to have constant pressure and temperature and appropriate values of the column densities of the absorbing molecules. Clearly such a decomposition is not unique and requires the user to exercise some care in defining the atmosphere as will be discussed below. While this arrangement may demand a certain degree of

sophistication of the user, it is judged the whis solution will enable a user to be more flexible in changing from one process to another than he would be if the program were tied to a given atmospheric model.

The basic structure of FASCODE is then a successive application of the HIRACC algorithm for successive atmospheric layers with an appropriate merging of the results. For convenience, the HIRACC Program reported in Reference [3] has been left almost unchanged except to modify it to subroutine form and to include the Voigt line shape profile described in the previous section.

The merger of the abscrptance for two different layers is performed in the following manner. The results for the first layer are computed and written to disk as described in Reference [3]. (We remind the reader that the HIRACS algorithm processes the spectral absorptance in "panels", namely in groups of data defined at wave numbers separated by a sampling interval. Typically there are 2400 quantities in a panel but a panel may be shorter at the end and beginning of the requested wave number interval.) The resolution at which the first layer is to be calculated is determined by the sampling interval criterion described by Clough et al $^{[3]}$, namely one-quarter of the average half-width of the lines. The next layer to be computed may have pressure and temperature sufficiently different such that a new sampling interval is required by the sampling criterion. Let the sampling interval for the first layer be DV1 and that for the second, DV2. In the initial development of FASCODE a decision was made to limit the program to specified ratios DV1/DV2. Note that since the pressure in the atmosphere is a monotonically decreasing function of altitude, the average half-width of a :al Lorentz line profile will decrease as the calculation proceeds from ower to higher altitudes. Thus the sampling interval determined using tı. the riterion of Reference [3] will also decrease as the calculation proceeds to the higher altitules, until the pressure no longer remains the principal determ aing factor. This will occur at altitudes where the Doppler width becomes dominant in the determination of the half-widths. Such effects are already included in the Voigt line shape profile model discussed above. In addition, the Voigt model provides a proper treatment of the transition region at those altitudes where neither the Doppler nor the Lorentz profile is appropriate.

In general then, the sampling interval is larger at lower altitudes and smaller at the higher levels. This implies that a calculation which proceeds from the lower to the higher layers is more efficient since one would not have to perform the calculation of the lower layers at the small sampling intervals required by the narrower line shapes at the higher altitudes. Therefore, in FASCODE, the HIRACC algorithm is implemented by starting at the lowest layer (highest pressure) and proceeding to higher layers (lower pressures).

Since the decision was made to limit the number of ratios of the sampling intervals between two adjacent layers, FASCODE resets the DV of a new layer to the nearest allowed ratio. Note that the user must be careful to prepare the atmospheric input with a sufficient number of layers so that the criterion for the ratios is met. This is not a difficult condition to meet and it is discussed in detail in the User's Manual in Appendix B. In principle, the restriction to a fixed number of ratios is not necessary. This was discovered late in the development of FASCODE, but was left for future effort. We shall discuss this briefly in the final section.

The computation of the second layer then proceeds using the HIRACC algorithm with the reset value of the sampling interval. The new results are also written to disk, by Subroutine PANEL, using a different file name. Having obtained the spectral absorptance for each layer, one now needs a method to merge the two results such that after the merger one has the absorptance for a path through both layers defined at the resolution of the higher layer. This is obtained by interpolating the "old" or coarser resolution results into the "new" or tiner resolution values of the spectral absorptance. A simple four-point Lagrangian interpolation scheme proved adequate [15]. This is summarized as follows: If f(x) is a function defined numerically over a given region with a constant increment h, then the value of the function at some point $(x_0 + ph)$, where p is a real number (-1 , is approximated by the relation

$$f(x_0 + ph) = A_{-1}f_{-1} + A_0f_0 + A_1f_1 + A_2f_2$$
 (3.1)

Here f_n is the value of the function at $(x_0 + ph)$ and the constants are given

by the relations

$$A_{-1} = -p(p-1)(p-2)/6$$
 (3.2)

$$A_0 = (p^2 - 1) (p - 2)/2$$
 (3.3)

$$A_1 = -p(p+1)(p-2)/2$$
 (3.4)

$$A_2 = p(p^2 - 1)/6$$
 (3.5)

The number of allowed resolution ratios was chosen in the following manner. First it was required that the old and new absorptances should be aligned at some running values of the wave number at least. This implied that the ratios were to be ratios of integers. For further simplification it was also required that the ratio be of the form (N+1)/N. In addition, one must include the case where the sampling interval does not change, namely a one-to-one ratio. After some experimenting with larger values of the integer N, it was found adequate to limit the number of ratios to the following: 2/1, 3/2, 4/3, 5/4 and 1/1.

The interpolation is then performed by identifying the quantity \mathbf{x}_0 in Equation (3.1) with the next lowest wave number of the old array below the value needed for addition to the new array. The interpolation is characterized by an index (called ITYPE in the program) which is the number of points needing interpolation between the wave numbers which co-align in the two arrays. This will be clear after a glance at Table 3.1. For the 1/1 case (straight add) no interpolation is required and the index is zero. For the 2/1 ratio, one point must be interpolated and ITYPE=1. The remaining schemes are quite clear. The value of the index ITYPE is used to determine the values of p in Equations (3.2) - (3.5) and then in turn to compute arrays of the interpolation constants \mathbf{A}_i for interpolating the values between the co-aligned wave numbers. The remainder of the merging algorithm consists in bookkeeping to access the two disk files containing the panel data for the old and the new layers. In addition, the merged results are also written to a third disk file for merging with the next layer. The procedure is

TABLE 3.1. ALLCWED RATIOS AND SCHEMES

Ratio		Scl	Scheme								Index (ITYPE)
1/1	01d New	• •	•						•		0
2/1	Old New	• •	× •	••							1
3/2	01d New	• •	* *	ו	• •						2
4/3	01d New	• •	× •	•	× •	•	ו				က
5/4	01d New	• •		× •	•	× •	•	ו	× •		4

calculated spectra, value

= Interpolated spectral value to match value in new spectrum

then continued until the final layer is processed.

In order to test the merging algorithm, the following procedure was devised. The calculation was performed as described above except that the spectral absorptance calculated for each layer was replaced by a known function of simple form. Consider the case where the absorptances from two layers are merged. If ν_0 is the lower boundary of the frequency range of interest and $\Delta\nu_1$ and $\Delta\nu_2$ are the sampling intervals for layers 1 and 2 respectively, $(\Delta\nu_1 \geq \Delta\nu_2)$ by assumption) then the test is made by replacing the calculated optical depths in each layer (e.g., τ_1 and τ_2) by the expressions

$$\tau_1 = v_0 + (j_1 - 1) \Delta v_1/2 \text{ and } \tau_2 = v_0 + (j_2 - 1) \Delta v_2/2$$
 (3.6)

where j_1 and j_2 are <u>running</u> indices which give the number of frequencies at which calculations have been performed, i.e., the lower bound wave number is j = 1 and the upper bound is $j = n_{\ell}$ where n_{ℓ} is the total number of frequency values in the region calculated.

The array τ_1 is to be merged into the finer spaced array τ_2 . Call the merged result τ_{12} and let j be its running index. From Equation (3.6), it follows readily that

$$|\tau_{12}(j+1) - \tau_{12}(j)| = \Delta v_2$$
 (3.7)

provided the merging process is correct. Since the interpolation involved cannot be expected to be exact, the following test was made for all values of τ_{2}

$$|\tau_{12}(j) - \tau_{12}(j-1)|/\Delta v_2 \le 10^{-4}$$
 (3.8)

If this inequality was not satisfied the program was directed to print this fact together with the associated parameters.

This testing procedure was followed and the inequality (Equation (3.8)) was found to be satisfied at all points except at the lower and upper

bounds of the wave number interval. This was due to the problems of starting and stopping the Lagrangian interpolation when points are not available. A simplified interpolation scheme was chosen at these boundaries which did not have sufficient accuracy to satisfy the merging criterion in Equation (3.8). This is <u>not</u> a problem however, since the HIRACC algorithm^[3] automatically expands the requested wave number region by a small amount in order to assure that all lines which contribute to a wave number interval are included. Thus we conclude that the merging procedure does pass our criterion. The extension of this test to more than two layers is straightforward. In Equation (3.6), the factor 1/2 is to be replaced by 1/N where N is the number of layers.

The next test of the algorithm required the calculation of a case for which another high-resolution calculation has been performed. For this purpose, the calculations done by Kyle at NCAR were selected [16]. Kyle performed a multilayer atmospheric transmission calculation in the wave number region (1-2600) cm⁻¹. He used the AFGL tape, a Voigt line shape truncated at 5 cm⁻¹ from the line center and a model atmosphere based on the AFGL midlatitude summer profile[14]. The atmosphere he used is given in Table 3.2. We note briefly that Kyle's results were degraded in resolution by convolution with a triangular instrument scanning function with full width at half maximum of 20, 5, and 0.1 cm^{-1} . Since FASCODE did not as yet have this feature, we compared directly with his highest resolution graphs. It is also noted that Kyle's atmosphere had to be modified to fit the ratio criterion mentioned above. This was done by defining additional layers where there were larger altitude gaps in Kyle's atmosphere. We show the resulting atmospheric model in Table 3.3. We limited ourselves to the wave number range (2000, 2200) cm⁻¹. This shall be referred to as the test problem.

The results of the calculation for our test problem are shown in Figure 4.2. The spectra obtained by FASCODE are in entire agreement with those obtained by Kyle. We delay further discussion of the results until the next section in order to present transmittance and radiance results at the same time.

TABLE 3.2. ATMOSPHERIC LAYERS USED IN THE COMPUTATIONS OF KYLE[16]

202	A1+	Pres	ressure	Tomp		Number	Number of Molecules in Layer (molecules/ ${ m cm}^2$)	es in Laye	r (molecul	es/cm ²)	
(km)	(km)	(mb)) (c	(°K)	о ² н	² 00	03	N ₂ 0	00	CH ₄	02
	4				1.11×10^{2}	3.32×10^{21}	1.11x10 ²² 3.32x10 ²¹ 1.60x10 ¹⁸ 2.77x10 ¹⁸ 7.55x10 ¹⁷ 1.61x10 ¹⁹ 2.11x10 ²⁸	2.77×10 ¹⁸	7.55×10 ¹⁷	1.61×10^{19}	2.11x10 ²⁴
2	14		59.4		1.19×10^{19}	6.47×10^{20}	1.19x101º 6.47x102º 1.90x101º 5.39x1017 1.47x1017 3.14x1019 4.12x1023	5.39x10 ¹⁷	1.47×10 ¹⁷	3.14×1018	4.12×10 ²³
3,4*		59.4	13.2	223	1.87×10 ¹⁹	3.23×10^{20}	1.87×10 ¹⁹ 3.23×10 ²⁰ 4.20×10 ¹⁸ 2.69×10 ¹⁷ 7.34×10 ¹⁶ 1.56×10 ¹⁸ 2.05×10 ²⁹	2.69×10^{17}	7.34×1016	1.56×10 ¹⁸	2.05x10 ²³
3 <u>B</u> *	30	13.2	3.32	241	6.40x10 ¹⁸	6.91×10^{19}	6.91×10 ¹⁹ 1.80×10 ¹⁸ 5.76×10 ¹⁶ 1.57×10 ¹⁶ 3.35×10 ¹⁷ 4.40×10 ²²	5.76x1016	1.57×10 ¹⁶	3.35x10 ¹⁷	4.40×10^{2}
4	40	3.32	1.75	29 2	6.40x10 ¹⁷	1.10×10^{19}	6.40x10 ¹⁷ 1.10x10 ¹⁹ 2.00x10 ¹⁷ 9.15x10 ¹⁵ 2.49x10 ¹⁵ 5.32x10 ¹⁶ 6.98x10 ²¹	9.15x10 ¹⁵	2.49x1015	5.32×1016	6.98×10^{21}
2	45	1.75	0.58	275	3.70×10 ¹⁷	8.11×1019	3.70x10 ¹⁷ 8.11x10 ¹⁸ 6.70x10 ¹⁸ 6.76x10 ¹⁵ 1.84x10 ¹⁵ 3.93x10 ¹⁸ 5.16x10 ²¹	6.76x1015	1.84×10^{15}	3.93×1016	5.16x10 ²¹
9	5 5	0.58	0.00	259	1.00×10 ¹⁷	4.08×10 ¹⁸	$1.00 \times 10^{17} + 0.08 \times 10^{18} + 8.60 \times 10^{15} + 3.39 \times 10^{15} + 9.26 \times 10^{16} + 1.98 \times 10^{16} + 2.59 \times 10^{21}$	3.39x10 ¹⁵	9.26×1014	1.98x1016	2.59x10 ²¹

*The 152-13.2 mb pressure range was too large for a single layer approximation, so an additional layer was added at 59.4 mb. This altitude is not included in the figures.

TABLE 3.3. ATMOSPHERIC LAYERS USED IN THE TEST PROBLEM

	1			Number	of Molecul	Number of Molecules in Layer (molecules/cm ²)	. (molecule	2s/cm ²)	
Layer	Pressure (mb)	Тепр. (К)	н ⁵ 0	² 00	ე ³	N20	03	CH ₄	² 0
	525,857	264.	.938E+22	.141E+22	.261E+13	.120E+19	.320E+18	.683E+19	.894E+24
2	332.874	243.	.165E+22	.128E+22	.459E+18	.109E+19	.292E+18	.622E+19	.815E+24
3	197.564	223.	.632E+20	.626E+21	.535E+18	.531£+18	.142E+18	.304E+19	.398E+2å
4	124.900	216.	.761E+19	.404E+21	.785E+18	.343E+18	.919E+17	.196E+19	.257E+24
5	77.277	.217.	.5055+19	.251E+21	.108E+19	.213E+18	.570E+17	.122E+19	.159E+24
9	36, 603	224.	.135E+20	.328E+21	.331E+19	. 279E+18	.746E+17	.159E+19	.209E+24
7	8.340	243.	.499E⊹19	.705E+20	.126E+19	.598E+17	.160E+17	.342E+18	.¢48E+23
8	2.551	263.	.491E+18	.112E+20	.153E+18	.948E+16	.254E+16	.542E+17	.710E+22
Øì	1.156	267.	.259E+18	.844E+19	.660E+17	.716E+16	.192E+16	.409E+17	.536E+22
10	.274	255.	.475E+17	.408E+19	.118E+17	.346E+16	.928E+15	.198E+17	.259E+22
	4								-0

4.0 RADIANCE FROM AN ATMOSPHERE IN LOCAL THERMODYNAMIC EQUILIBRIUM

If one assumes that a given infinitesimal volume of a gas is in local thermodynamic equilibrium (LTE) at some temperature, it follows that whatever amount of radiant energy is absorbed by this gas, an equal amount of energy must be re-emitted in order to maintain the equilibrium state. Furthermore, the spectrum of the radiation re-emitted will be determined by the black body or Planck function using Kirchhoff's law. This LTE model may be expected to be more nearly valid at the lower altitudes where collision frequencies are quite high. At the higher altitudes ($^{>}$ 25 km), one should expect non-equilibrium effects (NLTE) to be important. Indeed, Degges [17] has been developing a comprehensive NLTE atmospheric radiance model for a number of years and other workers have studied the high altitude problem as well [18]. The FASCODE Program could also be used for the NLTE case if vibrational or rotational temperatures and/or populations of states at higher altitudes were read in. Such data could be prepared by programs such as Degges' work.

Despite its shortcomings at higher altitudes, a LTE atmospheric radiance model can be very useful not only in the low altitude regime, where it rests on solid footing, but also in the higher regions where one may use it to characterize the degree of deviation of the NTLE situation from the equilibrium case. A number of workers have prepared LTE radiance models among which we want to mention the recent extension of the AFGL LOWTRAN model to include a radiance calculation^[2].

In this section we present the algorithms implemented in FASCODE to enable the calculation of atmospheric radiance along a given optical path assuming LTE along that path. To provide the most efficient calculation of the radiance, it was decided to calculate its value layer-by-layer along with the spectral absorptance calculation described in the previous section. It should be noted that the radiance of a path proceeding from lower toward higher levels is not the same as that for the same geometrical path proceeding from higher to the lower layers. Figure 4.1 presents a sketch of two such paths, space-to-ground (Figure 4.1a) and ground-to-space (Figure 4.1b). A four-layer atmosphere has been shown for simplicity, each layer being labeled by the letter A, B, C, or D. The boundaries between each layer have

Figure 4.1: Sketch of the difference between a path looking up and one looking down.

been numbered from 1 to 5 where 5 is the ground at temperature at θ_g . The temperature of each layer is called θ_i , i+1 where i is one of the labels for the boundaries. The transmittance contributions between any two boundaries are defined as $T_{i,i}$ where i and j are boundary indices.

Consider now the equilibrium radiance from Layer A to space in Figure 4.1a. Using Kirchhoff's law this may be written as

$$R_{A-S} = (1 - T_{12}) P(\theta_{12}, \nu)$$
 (4.1)

where P is the Planck function and ν is the frequency in cm $^{-1}$. Proceeding to the next layer the contribution of this layer to the radiance observed in space is

$$R_{B-S} = T_{12}(1 - T_{23}) P(\theta_{23}, \nu)$$
 (4.2)

and the remaining two layers can be written as

$$R_{C-S} = T_{12} T_{23} (1 - T_{34}) P(\theta_{34}, \nu)$$

$$= T_{13} (1 - T_{45}) P(\theta_{34}, \nu)$$
(4.3)

and

$$R_{D-S} = T_{12} T_{23} T_{34} (1 - T_{45}) P(\theta_{45}, \nu)$$

$$= T_{14} (1 - T_{45}) P(\theta_{45}, \nu)$$
(4.4)

Finally the contribution of the ground is

$$R_{g-s} = 7_{12} T_{23} T_{34} T_{45} P(\theta_g, v) = T_{15} P(\theta_g, v)$$
 (4.5)

The total radiance is then the sum of all these Lerms. Extending this to

the case of n layers with n + 1 boundaries we can write

$$R_{\text{total}}^{(\text{down})} = \sum_{i=1}^{n} T_{1,i} (1 - Y_{i,i+1}) P(\theta_{i,i+1}, \nu)$$

$$+ T_{1,n+1} P(\theta_{n+1}, \nu)$$
(4.6)

where now θ_{n+1} is a temperature characteristic of the last boundary. Note that in general, this is not necessarily the ground. (It shall be noted $T_{ij} = \prod_{k=1}^{j} T_k$, k+1.) Also, it is not required that the spectral distribution at the boundary be given by the Planck function. An arbitrary spectrum or one characteristic of a particular type of radiating boundary may be substituted for the (n+1)'st term.

Turning now to the other case, looking up, we can write the following expression for the contribution to the radiance from each of the layers

$$R_{5-4} = (1 - T_{45}) P(\theta_{45}, \nu)$$
 (4.7)

$$R_{4-3} = T_{45}(1 - T_{34}) P(\theta_{34}, \nu)$$
 (4.8)

$$R_{3-2} = T_{34} T_{45} (1 - T_{23}) P(\theta_{23}, \nu)$$

$$= T_{35} (1 - T_{23}) P(\theta_{23}, \nu)$$
(4.9)

and

$$R_{2-1} = T_{23} T_{34} T_{45} (1 - T_{12}) P(\theta_{12}, \nu)$$

$$= T_{25} (1 - T_{12}) P(\theta_{12}, \nu)$$
(4.10)

Again, the total radiance is the sum of the individual terms for each layer which may be written as

$$R_{(\text{total})}^{(\text{up})} = \sum_{i=0}^{n-1} T_{n-i, n} \left(1 - T_{n-i-1, n-i}\right) P(\theta_{n-i-1, n-i}, \nu) + T_{1, n+1} P(\theta_{1}, \nu)$$
(4.11)

where we have implicitly defined $T_{1,1}=1$ for convenience. To present a radiating boundary at the end of an upward looking path, such as a cloud or the Zodiacal light, one may add the same type of boundary radiating term as discussed for the downlooking case. An upward looking boundary has not been included in FASCODE as yet but a user can readily add one if it should be required. A glance at Equations (4.6) and (4.11) is sufficient to see the difference between each case.

The expressions in (4.6) and (4.11) are convenient mathematical representations of the algorithm but for computational purposes it is more useful to represent the algorithms such that they manipulate the new increment to the transmittance for a given layer i, and the radiance and total transmittance accumulated up to that layer. As was mentioned in Section 3, the calculation proceeds from the lowest layer to the highest in order to minimize the time for merging. If ΔT_i is the incremental transmittance, E(i) the radiance and P(i) the Planck function, the radiance and transmittance after the i^{th} layer has been traversed are

$$\begin{array}{ll} \text{(up)} & \text{(up)} \\ \text{E(i)} &= \text{E(i-1)} + (1 - \triangle T_i) \text{ P(i)} \cdot \text{T(i-1)} \end{array} \tag{4.12}$$

and

(down) (down)
E(i) =
$$\Delta T_i$$
 E(i-1) + (1 - ΔT_i) P(i) (4.13)

for the radiance looking up and looking down, respectively. The transmittance is clearly given by the relation (for both cases)

$$T(i) = \Delta T_i \cdot T(i-1) \tag{4.14}$$

The boundary radiance is frequently not a function with very fine spectral resolution. Thus, for the lookingdown case, the most efficient procedure is to compute the boundary radiance at the coarse resolution of the lowest layer and include it with the radiance of the first layer (modified by the transmittance, of course). This will then be properly carried along through the remainder of the calculation. For the case of a radiating boundary at the upper end of a path looking toward space, it is simplest to add the contribution from the boundary after all calculations have been performed modifying it by the total transmittance computed for the path. As mentioned above, FASCODE at this juncture does not include coding for this second case, but does include a radiating boundary at the end of a down-looking path.

In order to speed up the calculation of the Planck function the following procedure was followed. For each panel, the black body function is computed and the results stored in an array with separation of one wave number. The value needed at a given wave number is obtained by interpolation which is performed only when the value of the Planck function can be expected to have changed sufficiently to warrant an updated value. If the Planck function is written

$$P(v) = Av^{3} (e^{SV} - 1)^{-1}$$
 (4.15)

where ν is in wave numbers and s = C₂/ θ , θ being the temperature, and C₂ the second radiation constant (1.4388). Taking the derivative with respect to ν we may write

$$\frac{dP}{P} = \frac{dv}{v} \left[3 - (sv) \left(1 - e^{-sv} \right)^{-1} \right] \tag{4.16}$$

If one takes $|\Delta P/P| \stackrel{<}{\sim} 10^{-4}$, the increment at which one should interpolate to obtain a new value of the Planck function is easily computed. This alleviates the need to recalculate the Planck function unecessarily.

The implementation of this algorithm for LTE radiance in FASCODE is contained in two subroutines, EMUP and EMDOWN, for paths "looking" up toward space and "looking" down toward the ground respectively. An additional subroutine was prepared to compute the first layer (the lowest), EMINIT. In this routine the possibility of radiation from a boundary was included for the downward-looking case.

The merging of the results layer-by-layer proceeds in a similar fashion to that for the absorptance described in Section 3. One difference is that now one needs to merge two quantities, namely, the radiance computed and the transmittance as the calculation proceeds from layer to layer. These quantities are written to disk in two records, first the radiance, followed by the transmittance. The code accesses the HIRAC algorithm to obtain the spectral absorptance panel by panel for each layer. This information is converted to transmittance by exponentiation in either EMUP or EMDOWN depending on the case of interest. The LTE radiance algorithm is then exercised as the merging is taking place.

The radiance routines were tested in a manner similar to the merging test described in the last section. Consider the case of a series of n layers with a path from space to ground with a boundary at temperature θ . If one modifies the input data such that each layer has the same temperature as the boundary, then one can show that the resulting radiance will be given by the Planck function at temperature θ , a result which is not at all surprising. The same result holds for the upward looking case if a boundary is added at the upper end and the temperatures are all set equal. This procedure was followed with the results as expected to within accuracy requirements inherent in the mathod.

The idiance package has been tested for the problem described in its previous section. The radiance results are shown in Figures 4.2 together with the transmittance for a path looking from space to ground which is modeled as a black body radiator with temperature, T = 273 K. Note the smaller range of the abscissa for Figures 4.2(e) and 4.2(f). The absorption features seen in Figures 4.2 are clearly seen in the radiance profiles as well. The expanded frequency scale in Figures 4.2(e) and 4.2(f) show this most clearly. Self-reversal can eas be seen in the radiance for strong absorption lines.

Ņ

Figure 4.2 (a): Transmittance and radiance for the test problem (1995-2055 $m cm^{-1})$

Figure 4.2 (b): Transmittance and radiance for the test problem (2045-2105 cm $^{-1}$).

Figure 4.2 (c): Transmittance and radiance for the test problem (2095-2155 ${
m cm}^{-1}$)

, \

Figure 4.2 (d): Transmittance and radiance for $t_{
m IS}$ test problem (2145-2205 cm $^{-1}$)

Figure 4.2 (e): Transmittance and radiance for the test problem with expanded scale (2060-2065 cm⁻¹).

Figure 4.2 (f): Transmittance and radiance for the test problem arkappaith an expanded scale (2075-2080 cm $^{-1}$)

This is particularly dramatic in Figure 4.2(f) near the band edge of the ${\rm CO}_2$ (11101-00001) transition.

In Table 4.1 we give the time results of the run made to produce Figures 4.2. All times are for the CDC 6600 computer system at AFGL. For each of the layers of the test problem, we give the altitude boundaries and the temperature and pressure characterizing each layer. The next column gives the value of ζ used in computing the Voigt shapes for that layer. The average linewidth and the sampling interval are given in the columns labeled ALPHA and DV respectively. The ratios of the sampling intervals are given in the following column. The final four columns show the timing for the convolution of the spectra (CONV), the writing of the panels to disk (PANEL), the calculation of the radiance (EM) and the calculation of the transmittance merging (ABS). The sums of the times for each column are also presented. Note that the total number of lines processed was 6681. The convolution took approximately 0.7 msec per line per layer. This latter statistic is very meaningful, since it gives the reader some idea of the speed of the program. The total time for a transmittance calculation only, may be obtained by summing the totals of the columns marked CONV, PANEL and ABS (i.e., 102.2 seconds). For the radiance calculation along the same path, one obtains the total time by summing the totals of the columns marked CONV, PANEL and EM (i.e., 175.3 seconds).

TABLE 4.1. TIMING RESULTS FOR THE TEST PROBLEM

Layer.	Ait. km	Press.	Temp.	Zeta	Alpha cm ⁻¹	DV Cm-1	DV _i	CORY	PANEL	Se G	ABS
r-4	4-7	525.9	264.4	0.95	0,04396	0.01380		4.6	6.2	0.7	
2	7-11	332.9	242.7	0.94	0.02919	0.00920	3:2	4.5	0.3	1.8	0.8
m	11-14	197.6	222.9	0.90	0.01823	0.00613	3:2	4.1	0.4	2.7	1.1
4	14-17	124.0	216.0	0.86	0.01181	0.00307	2:1	5.2	6.0	5.1	2.2
ເກ	17-20	77.27	216.9	0.79	0.00763	0.0023n	4:3	4.5	1.2	7.1	3.1
9	20-30	36.60	223.9	0.64	0.00419	0.00115	2:1	4.9	2.4	13.5	5.8
7	30-40	8.340	243.0	0.28	0.05230	0.000575	2:1	5.3	4.7	26.6	11.7
യ	40-45	2.551	263.3	0.10	Ĝ. 00207	0.000575	1:1	4.8	4.7	15.4	2.0
ص ص	45-54	1.156	267.3	0.048	0.00202	0.000575	1:1	4.7	4.7	15.5	2.1
10	54- æ	0.2742	255.4	0.012	0.00193	0.000575	1:1	4.5	4.7	15.6	2.1
						TOTAL		47.1	24.2	104.0	30.9

5.681 Lines 2000 to 2200 cm⁻¹

5.0 CONCLUSIONS AND RECO ENDED EXTENSIONS OF THE PROGRAM

For certain purposes it is helpful to use a pure Lorentz or a pure Doppler line profile instead of the Voigt profile, which takes slightly more computational time than the Lorentz line shape or the Doppler line shape alone. For example, a user might have a problem involving only transmission at the very high layers of the atmosphere, ($\stackrel{>}{\sim}$ 40 km) in which region the line shape is purely Doppler. On the other hand, one might be interested in studying a laboratory experiment at relatively high pressures for which the Lorentz profile is adequate. The addition of the pure Doppler and the pure Lorentz cases is straightforward and has been accomplished. The reader is referred to the program listing in Appendix 3. The revisions which were required for the pure Lorentz case include:

- a. Subroutine SHAPED is not needed.
- b. The least squares fits for the linear combination of the two profiles are not necessary (AVRAT, $a_{VD}(\zeta)$, $a_{VI}(\zeta)$, $C(\zeta)$).
- c. All program references to the quantity ζ are deleted.
- d. The final result is, of course, similar to the original HIRACC coding $^{[3]}$. Here it is called HIRACL.

For the pure Doppler case, the following differences arise:

- a. Subroutine SHAPEL is not used.
- b. Delete all & references.
- c. Only the FF array is used, VSF and SF are not needed.
- d. The resulting routine is called HIRACD.

Some care had to be taken to assure that the proper indexing is made.

The contributions of the various continuum features have not been included as $yet^{[1,2,14,20]}$. These features arise from a number of physical

processes such as absorption by atmospheric aerosols, and a variety of molecular continuum processes for molecules such as N_2 , CO_2 , H_2O . In addition the contributions of the lines beyond 64 half-widths must also be included as part of the continuum contribution. In general, the continuum absorption is a slow function of wave number and may be directly incorporated into the VSF array. This operation will not significantly affect the running time of the program.

The line-by-line results have finer spectral detail than is required for comparison with some experiments. Some instrumentation (especially that used for engineering systems) does not have resolution such that the final spectral detail computed in this version of FASCODE can be resolved. A method is required for convolving a given instrument scanning function with the FASCODE output in order to degrade the detailed results for comparison with lower resolution data. Work on this aspect is currently underway at AFGL. We note that the convolution techniques used in the line-by-line spectral synthesis (HIRACC algorithm) may also be applied to a scanning function convolution.

When the sampling interval is constant from one layer to the next, and one is not calculating the radiance, it seems clearly possible to devise a new method which would decrease the running time considerably. This method would compute at the same time the spectrum for all of those adjacent layers which have a constant sampling interval. For example, above a certain altitude where the Doppler line shape becomes dominant, essentially all of the sampling intervals can be taken to be constant and the merging calculations for all of these layers can be done panel by panel.

Finally, for applications in systems studies it is recommended that spherical geometry be added which could account for the fact that the earth's atmosphere is not plane parallel, but rather spherical. With this addition to the code, the calculation of limb radiance would be easily performed and practical applications could be taken directly from FASCODE.

To illustrate this, consider a remote sensing satellite viewing the earth on some sight path. If the sight path ends on the earth's surface or some other surface above the earth such as a cloud layer, no great extension to the program need be made. One merely needs to program a method for computing column densities of the absorbing molecules for each layer. However,

for the case of a sight path that is glancing, or tangent to some altitude above the earth, the problem is more complicated.

Figure 5.1 is a sketch of this case. Here r_{max} is the earth-centered radius to the maximum altitude for which calculations are to be made, and r_T is the corresponding radius to the tangent height at Point T. Let A and B be the points at which the line-of-sight intersects the circle of radius r_{max} . First, we consider the case where only the transmittance is to be calculated. It is clear that the largest sampling interval which will be determined from the criteria programmed in FASCODE, will be found in the tangent height layer and the smallest will be for the layers ending at the two points A and B. Thus the optimum procedure will be to start at the tangent height where one has the smallest number of points needed to characterize the convolved spectral transmittance. Next, we note that the two paths TA and TB are identical compositions of column densities. Thus the transmittance from path TB is identical to that on path TA and the total transmittance may be obtained simply by doubling the contributions from each layer and computing only one of the two paths TA or TB. Note that it is the column densities which are to be doubled and not the transmittance. Also we have tacitly assumed that the atmospheric composition profiles do not change appreciably along the path ATB. Since the angle ACB can be as large as \sim 20°, this may not be the case. Thus, for example, the sight path may enter the atmosphere at \sim 45°N latitude and exit at 65°N latitude and the profiles can be quite different, especially for water. This is a complication which may or not be important in a given case. No essential difficulties should occur, however, should this situation need to be investigated.

For the radiance calculation, it is again best to start at the tangent part of the sight path. This can be done simultaneously with the TB part corresponding to a path looking up and the TA part to a down-looking path. When the calculations for the two final layers are finished, the total radiance, R_{TOT} , is computed simply by the relation

$$R_{TOT} = R_{TA} + T_{TA} R_{TB}$$
 (5.1)

where R_{TA} and R_{TB} are the results of the radiance calculations on paths TA and TB respectively, and T_{TA} is the transmittance from path TA. If Point B

Figure 5.1: Sketch of Tangent Path Satellite Viewing Geometry.

is not at the same altitude as Point A (for example Point B corresponds to a target or a cloud), no essential problems occur. One merely stops the calculation along TA at the altitude of Point B, performs the composition of Equation (5.1) and continues the calculation to Point A as before, but using the value $R_{\mbox{TOT}}$ for the radiance at the stopping point. This method has not been implemented as yet in FASCODE but the implementation should be straightforward.

REFERENCES

- 1. McClatchey, R.A. et al "AFCRL Atmospheric Absorption Line Parameters Compilation", AFCRL-TR-73-0096 (1973).
- 2. Selby, J.E.A., Kneizys, F.X. Chetwynd, J.H. and McClatchey, R.A., "Atmospheric Transmittance/Radiance: Computer Code LOWTRAN 4", AFGL-TR-78-0053, 28 February 1978.
- 3. Clough, S.A., Kneizys, F.X., Chetwynd, Jr., J.H., "Algorithm for the Calculation of Absorption Coefficient-Pressure Broadened Molecular Transitions", AFGL-TR-77-0164, 22 July 1977.
- 4. Burch, D.E., Gryvnak, D.A., Patty, R.R., and Bartky, C.E., "The Shapes of Collision Broadened CO₂ Lines", Philos Ford Corp., Aeronutronic Report U-3203.
- 5. Winters, B.H., Silverman, S. and Benedict, W.S., "Line Shape in the Wing Beyond the Bard Head of the 4.3 μm Band of CO₂", J. Quant. Spect. Rad. Trans. Vol. 4, p. 527 (1964).
- 6. Anderson, P.W., Physical Review, Vol. 76, p. 647 (1949).
- 7. Tsao, C.J., Curnutte, B., J. Quant. Spect. Rad. Trans. Vol. 4, p. 453 (1964).
- 8. Benedict, W.S. and Kaplan, L.D., J. Chem. Phys., 30, p. 388 (1959).
- 9. Pierluissi, J.H., Vanderwood, P.C. and Gomez, R.B., J. Quant. Spect. Rad. Trans., Vol. 18, p. 555 (1977).
- 10. Drayson, S.R., J. Quant. Spect. Rad. Trans., Vol. 16, p. 611 (1976).
- 11. Armstrong, B.H., J. Quant. Spect. Rad. Trans., Vol. 7, p. 61 (1967).
- 12. Whiting., E.E., J. Quant. Spect. Rad. Trans., Vol. 8, p. 1379 (1968).
- 13. Kielkopf, J.F., J. Opt. Soc. Am., Vol. 63, p. 987 (1973).
- 14. McClatchey, R.A. et al, "Optical Properties of the Atmosphere (Third Edition)", AFCRL-72-0497, Environmental Research Papers, No. 411, 24 August 1972.

- 15. Abramowitz, M. and I.A. Stegun, "Handbook of Mathematical Functions" NBS Applied Mathematics Series (55), 1964.
- 16. Kyle, T.G. and A. Goldman, "Atlas of Computed Infrared Atmospheric Absorption Spectra", NCAR-TN/STR-112, November 1975.
- 17. Degges, T.C., "A High Altitude Radiance Model", AFGL-TR-77-0271, December 1977 (In Press).
- 18. See for example, J.B. Kumer, "Atmospheric CO₂ and N₂ Vibrational Temperature at 40 to 140 km Altitude", J.G.R., <u>82</u>, 2195-2202.
- 19. Burch, D.E., "Semi-Annual Technical Report: Investigation of the Absorption of Infrared Radiation by Atmospheric Gases", Aeronutronic Report U-4784 (31 January 1970).
- 20. Burch, D.E., Gryvnak, D.A., Patty, R.R., and Bartky, C.E., "Absorption of Infrared Radiant Energy by CO₂ and H₂O. IV. Shapes of Collision-Broadened CO₂ Lines", J. Opt. Soc. Am., Vol. 59, p. 267 (1969).
- 21. Herzberg, G., <u>Infrared and Raman Spectra</u>, Van Nostrand, New York, (1945).
- 22. Varanasi, P. and Ho, F.K., "Intensity and Transmission Measurements in the v_3 Fundamental of N_2 0 at Low Temperatures", Thirty-Second Symposium on Molecular Spectroscopy, Paper RF5, Columbus, Ohio (1977).

APPENDIX A

CODE STRUCTURE AND DESCRIPTION

In this apperdix we present a description of the code. For the reader's convenience much of the documentation of the HIRACC algorithm^[3] has been reproduced here with an occasional modification. In addition, the new subroutines developed in this effort are described.

The program has been written to use line parameter input data consistent with that contained in the AFGL line parameter tape [1]. The line data has been reformatted onto a binary file which contains the line data pertinent to the molecules and wave number range of interest. This step has been taken to keep read time consistent with the time required to perform the calculational part of the program. The control parameters are read from the input file and written to the output file; TAPE3 is the binary file containing the line parameter data; and TAPE12 is always the binary output file. The final output and intermediate output files contain a header record which includes the identification information, SECANT, temperature, pressure, molecular identification, and molecular column densities of the homogeneous layers. The first record for each output panel is a header record for the panel which contains the wave number values of the first and last absorption coefficient values of the panel, the wave number increment between output points and the number of output points. The second record of the panel contains either the array of absorption coefficient values resulting from the convolution when only absorptance is calculated or the radiance array followed immediately by the transmittance array for radiance calculations. The current version of the program outputs a maximum of 2400 values per panel; in general, the first and last panel are shorter. The output file MFILE, and an additional file, LFILE, are used to store the intermediate data prior to merging the results for the layers. The merged results are always on MFILE. The file KFILE contains the absorption coefficients for each layer. Table Al outlines the use of these files and file labels.

FASCODE has been designed to be used with the CDC segmentation feature which allows the program to be run using a minimum of central memory by loading dynamically only those subprograms which are in use at a given stage of the code's execution. Using this feature, FASCODE requires only \sim 56 $K_{\rm R}$ words of central memory. If a user does not have a segmentation

TABLE A1. FILES USAGE

UNIT NAMES:

INPUT(=TAPE5), OUTPUT(=TAPE6) - Standard I/O files

4PE3 - Absorption line data file in buffered binary format

Output file from HIRACV routine; labeled KFILE; buffered binary format. Data to be merged with data from previous layer (on LFILE) except for first layer. TAPE10

Intermediate file used in merging layers; label alternates between LFILE and MFILE file structure - buffered binary format.

Final output file but used in intermediate merging of layers; indexing set to assure final result is on this unit; label may alternate between LFILE and MFILE but always MFILE=12 for final layer buffered binary format.

UNIT LABELS:

Contains HIRACV output for current layer - buffered binary

LFILE - Contains results of previous layer - buffered binary

Contains merged results from KFILE and MFILE - buffered binary MFILE

capability on the machine being used, allowance will have to be made for a larger amount of central memory. In this case, storage allocation should be redistributed to minimize total storage requirement, estimated at 77 Kg. That is, long extension arrays in EMUP, EMDWN, and ABS should be changed to unlabelled common.

A simple overall structure of the code was obtained. This is shown schematically in Figure A.1. HIRACV and its associated subroutines perform the spectrum synthesis of the absorptance. The merging subroutine is called ABSMRG for the absorption coefficient case. The LTE radiance computations are performed by subroutines EMINIT, EMUP, and EMDOWN. Subroutine TPLOT is an expanded version of the plotting program described in Reference [3], and it has been changed into subroutine form. Note that FASCODE can be used to prepare plots directly. Some possible future extensions of the program have been sketched as dotted lines in Figure A.1. The reader should note that the modular construction of the code allows straightforward extension and revisions.

The program consists of the main Program FASCODE: Subroutines ABSMRG, TPLOT, EMINIT, EMUP, EMDOWN, HIRACV, SHAPED, SHAPEL, MOLEC, RDFILE, CONVFNV, PANEL, HIRACL, CONVFNL, HIRACD, CONVFNC, and PANELD; and the Function QVRFAC. The overall strategy of the HIRACV Subroutine is indicated in Figure A.2. All the subroutines are called from the main program or from their subdriver (See Figure A.1) and the flow of the program is easily traced. Subroutines HIRACL and HIRACD perform the same functions for the Lorentz and Doppler line shape profiles respectively.

The main Program FASCODE reads the input data and calls each of the subdrivers shown in Figure A.1, according to the particular run desired as determined from the input. After initializing constants and reading the basic parameters for the run, the program enters a loop for the calculation of the requested results for each layer. Inside the loop the atmospheric properties, average temperature, average pressure and absorber molecule column densities are read from the input file for the given layer. The proper sampling interval is then computed and an identification header for the layer is buffered out to KFILE. Note that extensive use of BUFFER IN and BUFFER OUT is made to increase efficiency. If a user does not have this

Figure A.1: FASCODE Overall Structure.

Figure A.2: Flow Diagram for HIRACV Subroutine

Figure A.2: Flow Diagram for HIRACV Subroutine (Continued)

capability, these statements can be replaced by binary read and write statements. Subroutine HIRACV is then accessed to compute the spectral absorptance. Once this has been completed, the appropriate merging routine is accessed, unless it is the first layer for which no merger is necessary. For the radiance calculation, Subroutine EMINIT is called to compute the radiance due to the first layer. For all other layers, the radiance is obtained by calls to EMDOWN or EMUP for the cases of looking down and looking up respectively. When all layers have been processed, the plotting Subroutine TPLOT is called if the plot flag has been set by the user. Subroutines SHAPEL and SHAPED set up the convolution functions used to define the Voigt function from 0 to 64 half-widths.

Subroutine MOLEC in conjunction with Function QVRFAC, makes the molecular identifications associated with the line parameter file, and determines the correction factors for the line intensities (SCOR) and the half-widths (ALFCOR). The quantity, SCOR, is the correction factor due to the temperature dependence of the vibrational and rotational partition sums. The vibrational partition sum is calculation for a given molecular type as

$$Q_{V}(T) = \prod_{i=1}^{N} \frac{1}{\left(1 - e^{-hv_{i}/kT}\right)d_{i}}$$
 (A-1)

where v_i is a fundamental frequency and d_i is the degeneracy of the vibration. The temperature dependence of the rotational partition sum is given by

$$\frac{Q_{R}(T_{O})}{Q_{R}(T)} \approx \left(\frac{T_{O}}{T}\right)^{F} \tag{A-2}$$

where F=1 for linear molecules and 1.5 for nonlinear molecules. The reference temperature, T_0 , is taken as 296 K, consistent with the AFGL Line Listing. For further discussion of these topics, see Herzberg^[21] pp. 503 ff. The partition sum calculations are performed by QVRFAC and the recessary molecular parameters are contained in data statements in Subroutine MOLEC. The quantity, ALFCOR, is the correction factor due to the pressure and temperature dependence of the collision broadened half-width. The temperature

dependence of the half-width has been taken as $(T_0/T)^{0.5}$ although calculations based on the Anderson-Tsao-Curnutte theory are reported to give somewhat different temperature dependencies (Varanasi)^{22}.

Subroutine RDFILE reads the blocked binary line parameters over the wave number range for which line data is required. The line parameters include the wave number value of the transition (GNU, $\rm cm^{-1}$), the intensity of the transition at 296°K (S, $\rm cm^{-1}/(mol/cm^2)$), the collision broadened halfwidth at half maximum for 296°K and 1 atm pressure (ALFAO, $\rm cm^{-1}$), the lower state energy of the transition (EPP, $\rm cm^{-1}$), and the molecule identification number (MOL). If the line parameter data is insufficient to complete the specified calculation, the message "end of file on disk" is printed on the output file. If no further line data is required, IDATA is set to 1, and control is returned to the main program.

At this stage of the main program, an effective optical depth is calculated for each line which is dependent on the column density of the layer, the secant of the angle through the layer, the temperature of the layer, and the half-width of the line $\alpha(ALFI)$.

The effective depth, μ' ,

$$\mu' = \left(\frac{S(T)}{\alpha_{V}(T)}\right) \cdot w \cdot \sec \cdot \left(\frac{Q_{VR}(T_{O})}{Q_{VR}(T)}\right) \cdot \left[\exp \left(\frac{E''}{kT_{O}} - \frac{E''}{kT}\right)\right] \cdot \left[\frac{1 - \exp \left(-\frac{hv}{kT}\right)}{1 - \exp \left(-\frac{hv}{kT_{O}}\right)}\right]$$
(A-3)

where w is the absorber column density. E" is the lower state energy, $Q_{VR} \equiv Q_VQ_R$, and the other quantities have been previously defined. In terms of the program coding the effective depth appears as:

where XKT and XKTO are the wave number values of T and T_0 in cm⁻¹. As

previously discussed, the proper sampling interval, DV, should be 0.25 times the average line half-width. If the half-width, ALFI, is less than the sampling interval, the half-width is set to the sampling interval and a series of minus signs is written to the output file. If the half-width exceeds a maximum value (ALFMAX) where ALFMAX=BOUND/S4 and BOUND is the maximum value in wave numbers over which a line can be calculated, the half-width is reset to ALFMAX, and a series of + signs is written to the output file. Included in the records indicating the resetting of the half-width is the wave number value of the transition (GNU), the intensity (S) and the half-width (ALFAO) values of the transition from the line parameter cape, the calculated value of the half-width (ALFI), the value to which the half-width has been reset (DV or ALFMAX), and molecular identification number (M). If the number of half-width changes (NCHNG) exceeds 100, the computation is terminated.

Subroutine CONVFNV is a tightly written subprogram in which considerable effort has been taken to minimize operations in the DO 30 loop. This subroutine performs the triple convolution of XF, XS, and XVS with a line datum putting the results in the proper elements of FF, SF, and VSF respectively. A simplified flow diagram appears in Figure A.3. Control indicator IPANEL is set to IDATA if the DO loop over the lines (40) is satisfied indicating whether a panel is complete or more lines are required. If the line DO loop (40) is not completed, IPANEL is set to 1 indicating that a complete panel has been calculated. Control is returned to the main program.

PANEL performs a four-point Lagrange interpolation of the VSF array into the SF array and the SF array into the FF array, thus combining the results of three independent convolutions into a final result. A general flow diagram of PANEL is given in Figure A.4. Care is taken to store array values required for the interpolation of subsequent panels. VFT is the wave number value of the first element of the FF array, which is common to the first element of the SF and VSF arrays. A binary header record is written to the binary file (KFILE) for each panel which includes the wave number value (VIP) of the first element of the panel (FF(NLO)), the wave number value (V2P) of the last element of the panel (FF(NHI)), the wave number increment (DV), and the number

Figure A.3: Flow Diagram for SUBROUTINE CONVENV.

Figure A.4: Flow Diagram for SUBROUTINE PANEL.

of absorption coefficient values outputted (NLIM). The second binary record contains the NLIM values of the absorption coefficient from the FF array. The arrays are appropriately shifted and reset in preparation of the computation of subsequent panels. Control is again returned to the main Subroutine HIRACV.

At the conclusion of the outputting of the last panel for each layer, a record is written to the output file indicating the current value of the time, the time spant in RDFILE, in CONVEN, and in PANAL (the units are seconds). Also included in this record are the first and last wave number values of the panel. A second record is written to the output file indicating the average value of the half-width, the number of lines read since the last panel was completed, and the total number of lines read since the initiation of the convolution calculation. Control is returned to Statement 10 if the calculation is complete, or to Statement 40 to continue the convolution in process.

ABSMRG -- Absorption Merging

Subroutine ABSMRG performs the merging of the absorption layer-bylayer along a path. The absorption at the present layer and the accumulated absorption from previous layers are read from disk files. The constant ISMALL, computed in FASCODE, is used to identify whether the present or the accumulated layer has the smaller wave number increment. BUFFER IN and BUFFER OUT are used rather than READ and WRITE for speed of running. The array FF contains the absorption from the smaller increment and DUMF, the absorption from the larger. The index ITYPE, computed in FASCODE, gives the value of the numerator of the ratio of the two increments. The coefficients for the Lagrange four-point interpolation are computed and an interpolation is made for the absorption in the layer with the larger increment. The merging of the two layers is then carried out such that the merged absorptance has an increment equal to the smaller sampling interval. The output file contains a header record containing identification information, the values of the secant, pressure and temperature concentrations of the absorbing molecules, wave number increment, the value of the first, and last wave number in the panel and a layer count. Each panel's output consists of two records. The first record contains the first and last wave number in the panel, the wave number increment and the number of points in the panel. The second record contains the accumulated absorption. For speed of computation, if the wave

number increment is the same for both layers, the merging is done directly by merely adding the corresponding values. A simplified flow diagram is shown in Figure A.5.

Subroutine EMINIT computes the LTE radiance for the first altitude layer only. The Planck function is computed as described in the text. There is also the option of the radiance from a boundary, for the case of looking down. A simplified flow chart is given in Figure A.6. The radiance for the case looking from the space to ground is computed by the formula

$$NEWEM = (1 - TR)*BB + TR*OLDEM$$

The radiance from ground to space uses the formula

NEWEM =
$$(1 - TR)*BB$$

where TR is the incremental transmission of the layer, 8B the Planck function and OLDEM the radiance from the boundary when it is requested. Otherwise, it is zero. The results of the calculation are written on a file consisting of four records:

- 1. A header record containing alpha-numeric information supplied from FASCODE in the first seven words, the values of the secant,
 - e pressure, average temperature, concentrations of the absorbing molecules, DV, first and last wave numbers and a layer count.
- 2. V1, V2, DV and the number of points in the panel.
- 3. The radiance.
- 4. The transmission

Figure A.5: Flow Diagram for SUBROUTINE ABSMRG.

EMUP -- Radiance and Transmittance Looking Up

Subroutine EMUP performs the merging of the radiance and transmission layer-by-layer along a path looking up from ground to space. As in Subroutine ABSMRG, the 1/1 ratio of the DV's (wave number increment) is done separately for speed of computation. For the remaining ratios, ITYPE is computed in FASCODE and equals the value of the numerator of the ratio of the two DV's. The coefficients for the Lagrange four-point interpolation are computed and a file is read which contains the information for the accumulated quantities. This file consists of a header record which includes identification information, the value of the secant, pressure and temperature, concentrations of the absorbing molecules, wave number increment, the value of the first and last wave number in the layer, and a layer count. This is followed by a series of three records per panel. The first record contains the first and last wave number in the panel, the wave number increment and the number of points in the panel. The second record contains the accumulated radiance which is stored in array OLDEM. The third, the accumulated transmission stored in array OLDTR.

Similarly, the file for the new layer contains the header record and first and last wave number record. The next record contains the spectral absorptance from which the transmission is computed and is stored in array TR.

The black body function is computed as described in the text and an interpolation is made for the radiance and transmission with the larger wave number increment. The total radiance along the path length is computed using the formula

$${\tt NEWEM=OLDEM\ +\ (1.0\ -\ TR_{i})*BB_{i}*OLDTR}$$

where OLDEM is the interpolated old radiance, TR_i the new transmission increment, BB_i , the black body and OLDTR the interpolated transmission. The transmission is computed as

NEWTR=OLDTR*TR;

The output file is written such that it can be used as the input when treating the next layer. The flow chart for Subroutine EMUP is in Figure A.7.

EMDOWN -- Radiance and Transmittance Looking Down

Subroutine EMDOWN performs the merging of the radiance and transmission layer-by-layer along a path looking down from space toward ground. However, to achieve efficiency it is arranged such that the calculation always starts at the lowest altitude and continues upward. The logic for EMDOWN is exactly the same as Subroutine EMUP and the formula for computing transmission is the same. The LTE radiance, however, is computed as follows:

$$NEWEM=(1 - TR_{i})*BB_{i} + TR_{i}*OLDEM$$

where OLDEM is the interpolated old radiance, TR_i the transmission increment of the i'th layer and BB_i the black body function. In looking from space to ground it is not strictly necessary to compute the total transmission in order to compute the radiance but this feature has been included in this subroutine to make it compatible with Subroutine EMUP. Figure A.7 also gives the flow diagram for this routine.

APPENDIX B

USER'S GUIDE

Appendix B presents samples of input and output from a run of FASCODE on the AFGL CDC 6600 computer. A user may find these pages helpful in assessing whether the program has been adapted properly to a new machine environment.

As pointed out already, extensive use has been made of the BUFFER IN and BUFFER OUT capability available in CDC FORTRAN Extended. Since other computer systems (such as IBM 360/370) may not have this feature available, we have collected a list of all the BUFFER statements together with their identification numbers. This is given in Table B.1 and should be of assistance to a user whose machine requires the changing of the BUFFER statements to binary READ and WRITE statements.

Table B.2 gives a sample job setup for a run used in developing Test Case Output. The first record contains CDC job control cards (SCOPE). This is followed by a series of Segmentation Loader input cards which determine the way in which FASCODE is to be loaded into the system. The third and final record contains the input data for the execution of the Test Case Problem by FASCODE. Table B.3 contains a list and description of the FASCODE input data. A load map for this run is found in Table B.4. Finally, the output printed by FASCODE in executing this job is presented in Table B.5. To ascertain that a faithful version is in hand, it is recommended that a user execute this test case and compare the output with Table B.5.

With regard to the preparation of model atmospheres for input to FASCODE, the principal requirement is to assure that ratios of the sampling intervals between a layer and the one just above it is less than or equal to 2/1. It is suggested that 3/2 would be a good target ratio. This can be checked by computing the average half-width of the layers using Equations (2.2) or (2.4). If a user would feel more comfortable in his mind that a good model has been derived, one or two extra layers could be added at relatively low cost. However, it should be clear that each new layer increases the running time correspondingly.

TABLE B.1. LOCATION OF BUFFER STATEMENTS

	BUFFER	IN(LINFIL,1) (FILHO(1), VLINHI)	01653 6
	SUFFER	IN (LINFIL,1) (FILHR(1), VLINHI)	000790
		OUT(KFILE,1) (XID(1), NLAYER)	002540
10	AUFFER	IN (LINFIL,1) (VMIN, NREC)	063660
		IN (LINFIL,1) (GNU(I1),GNU(I2))	003710
30		IN (LINFIL,1) (GNU(I1), MOL(LIHIN))	003750
		OUT (KFILE,1) (VIP, NLIM)	005250
	BUFFER	OUT (KFILE,1) (FF(NLO),FF(NHI))	365276
		IN(KFILE,1)(XIO(1),XIO(2))	GO 90 40
260		OUT (MFILE,1) (XID(1), NLAYER)	069060
42C		IN(LFILE,1)(XID(1),NLAYER)	009080
		IN(IDLD, 1) (OV1P, NLIMO)	009190
		IN(IOLO,1)(OUMF(1),OUMF(NLIMO.)	CL9210
		IN(KNEW, 1) (V1P, NL IY)	009230
		IN(KNEH, 1) (FF(1), FF(NLTH))	009250
		OUT (MFILE, 1) (VIP, NLIM)	168581
		OUT(MFILE,1)(FF(1),FF(NLIM))	00 93 10
		IN(IOL7,1)(OV1P,NLIMO)	219553
310		IN(IOLO, 1) (DUMF(1), OUMF(NLIMO))	069580
		IN (KNEH, 1) (V1P, NL IY)	31 9623
330		IN(KNEW, 1)(FF(1), FF(NLIM))	009650
		IN(IOLD, 1) (OV1P, NLIMO)	009920
486		IN(IQLO, L) (DUMF(4), DUMF (NL IMO))	369973
150 370		OUT(MFILE,1) (VIP, NLTM)	010170
160		OUT(MFILE, 1) (FF(1), FF(NLIM))	010190
35ú		IN(KNEH,1)(V1P,NLIY) IN(KNEH,1)(FF(1),FF(NLIH))	010250
200		IN(KFILE.1)(XIO(1).NLAYER)	010720
		OUT (MFILE .1) (XID(1) .NLAYER)	010740
		IN (KFILE, 1) (OV1P, NLTMO)	01.780
		IN(KFILE, 1) (FF(1), FF(NLIMO))	J11,50
		OUT (MFILE, 1) (OV1P, NL 140)	011360
		OUT (MFILE, 1) (EMISS(1), EMISS(NLIMC))	311330
		OUT(MFILE.1)(FF(1).FF(NLIMO))	311435
		IN (LFILE .1) (XID(1), XID(2))	011780
		IN(KFILE, 1)(XID(1), NLAYER)	011800
		CUT (MFILE.1) ("ID(1).NLAYER)	011820
5 35	SUFFER	IN(LFILE, 1)(OVIP, NLIMO)	011950
		IN(LFILE, 1)(OLDEM(1),OLDEM(NLIMO))	011970
	DUFFER	IN(LFILE, 1)(OLDTR(1),OLDTR(NLIMO))	J11990
	BUFFER	IN(LFILE,1)(OVIP,NLIMO)	312423
	BUFFER	IN(LFILE, 1)(OLDE(.(1), O'.DEH(NLIMO))	312480
		IN(LFILE, 1) (OLCTR(1), OLCTR(NLIMO))	012530
	BUFFE→	IN(LFILE,1)(OV1F,NLIMO)	113.60
		IN(LFILE, 1)(OL DEM(4), OL DEM(NL IMO))	013130
130		IN(LFILE,1)(OLDTR(4),OLDTR(NLIMO))	013130
150		OUT(MFILE, 1) (V1P, NLIM)	313420
		ORT(MFILE, 1) (NEHEAL1) , NIHFM (NLIM))	-1344 0
		CUT(MFILE, t) (MEHTR(1), MEHTR(NLIM))	013460
360		IN(KFILE, 1)(V1P, NLIY)	613630
	_	IN(KFILE, 1) (TR(1), TR(4LIH))	.13652
		IN(LFILF, 1) (XID(1), XTD(2))	014570
		IN(YFILE, 1) (XID(1), NLAYED)	014590
		OUT (MFILE, 1) (XIO(1), NLAYER)	v14613
535		IN(LPILE, 1) (OV1P, NL IMO)	014740
		IN(LFILE, 1) (OLDER(1), OLDER(NLINO))	J14760
		IN (LFILE, 1) (OLDTR (1), OLDTR (NLIMO))	014780
1		IN(LFILE, 1)(OV1P, NLIMO)	015220
403		IN (LFILE, 1) (OLDEM (1), OLDEM (NLIMO))	015283
		IN(LFILE, 1)(QLDTR(1),QLDTR(NLIMO)) IN(LFILE, 1)(QV1P,NLIMO)	015300
	BUFFER	INCLFILE, 1) (OLDEN(A), OLDEN(ALIMO))	015800
42	BUEFER	IN(LFILE, 1) (OLDTR(4), OLDTR(NLIMO))	315840
	BUEFER	OUT (NFILE, 1) (V1P, N, IM)	61:860
7 20	BULLEY	OUT(MFILE, 1) (NEWER(1), NEWEM (NLIM))	01 0150
		OUT (MFILE, 1) (NEMTR(1), NEMTR(NLIM))	016170 016190
360		IN (KFILE, 1) (VIP, NLIM)	016390
J 01		TN(KFILE,1)(TR(1), YR(NLTH))	
	24, 1 L N	THE STORE OF THE SAFET AS THE STORE	J16415

THIS PAGE IS BEST QUALITY PRACTICABLE PROM COPY F. MISHED TO DDG

The state of the s

903

EOP

TABLE B.2. SAMPLE RUN DECK FOR TEST PROBLEM

•

```
74/74
           OPT=1
                                                FTN 4.6+425
                                                                      33/14/78 16.43.20
CLOUGH, CH57700, T48.
                                 FASCODEL
                                                        2 4
                                                                 CLOUGH
ATTACH. TAPET. CLOU1991T02210. ID=CLOUGH. HP=1.
REQUEST, TAPE12, *PF.
ATTACH, HIRACL, ID=CLOUGH, HR=1.
FTN, I=HIPACL, SL, B=LGO.
ATTACH, HIRACD, TO=CLCUGH, MP=1.
FTN: I=HIRACD, SL, B=DGO.
ATTACH, VGO, FASCODE, ID=CLOUGH, MC=1.
REWIND, OUTPUT.
MAP.PART.
LOSET . PRESET = INDE F.
LCAC. VGO.
LOAD, LGO.
LOAC, DGO .
SEGLOAD.
EXECUTE. FASCODE.
FAST TREE FASCODE-(HIRACV, HIRACD, HIRACD, ARSMRG, EMINIT, EMUF, EMOONN)
FASCORE GLOBAL MAIN, NEW HIPACY INCLUDE SHAPEL, SHAPED, VOICON, RPEILE, CONVENY, PANEL, HOLEC, GYRFAC
MIRACL INCLUDE SHAPEL, ROFILE, CONVENL, PANEL, MOLEC, OVERAC
MIPACO INCLUDE SHAPED, ROFILE, CONVENC, PANELD, MOLEC, CV SFAC
       END FASCODE
1 APPROX TO KYLE REPORT ... MIDLATITUDE SUMMER
                   0
        1
             0
   1
  2 395 .
            2105.
  273.
   10
                                            4.00 KM TO
                                                            7.60 KM
  525.8566 264.3769
 9.380F+21 1.409E+21 2.611E+17 1.195E+18 3.201E+17 5.831E+18 8.942E+23 3.334E+24
 332.8741 242.7476 7.00 KM TO 11.30 KM
1.649E+21 1.284E+21 4.587E+17 1.089E+18 2.917F+17 5.724E+13 8.149F+23 3.037E+24
                                           11.00 KM TO
  197.5644 222.8775
                                                           14.00 KM
 6.815E+19 6.262F+20 5.351E+17 5.313E+17 1.423E+17 3.035E+13 3.975E+23 1.482E+24
  124.0100 216.0000
                                           14.00 KM TC 17.30 K4
 7.6128+15 4.0438+20 7.8528+17 3.4298+17 9.1858+16 1.9608+18 2.5668+23 9.5638+23
   77.2771 216.9193
                                           17.03 KH TC 20.00 KH
 5.0456+18 2.5096+20 1.0816+18 2.1296+17 5.7026+16 1.2166+18 1.5936+23 5.9366+23
 36.5033 223.8896 20.72 KM TO 30.00 KM
1.3495+19 3.284E+20 3.311E+18 2.786E+17 7.462E+16 1.592E+19 2.085E+23 7.777E+23
    8.3402 242.9639
                                           JO. OC KH TO
                                                           40.00 KM
 4.989F+14 7.057E+19 1.259F+13 5.982E+16 1.603E+16 3.419E+17 4.477E+22 1.66)E+23
    2.4509 264.2770
                                           40.00 KH TO
                                                           45.36 KY
 4.9135+17 1.118E+19 1.529E+17 9.484E+15 2.541E+15 5.42.E+16 7.097E+21 2.645E+22
    1.1559 267.2521
                                           45.00 KM TO 54.00 KM
 2.59 (F+17 8.437E+18 5.597E+16 7.15EE+15 1.917E+15 4.090E+16 5.355 E+21 1.996E+22 .2742 255.4215 54.00 KM
```

4.745E+16 4.0ACE 18 1.176E 16 3.464E 15 9.276E 14 1.979E 16 2.591E 21 9.649E 21

TABLE B.3. INPUT DATA DESCRIPTION

XID	7 element array containint text. The text is
	printed with FASCODE output and is used as a
	header for execution time plots.
IHIRAC	1, Voigt approximation to line shape
	Lorentz approximation to line shape
	3, Doppler approximation to line shape
IEMIT	O, no emission calculation
	1, emission calculation performed
IL00K	O, emission calculation from ground to space
	1, emission calculation from space to ground
IPLOT	0, no plot
	1, on-line plot
	2, off-line plot
	3, CRT plot
	4, graphics plot
ISCAN	indicates parameter to be plotted (use if IPLOT≠0)
	1, absorption coefficient YY=YY
	2, log of absorption coefficient YY=ALCG10(YY)
	3, transmission YY=exp(-YY)
SECANT	secant of the angle between the line-of-sight
	and the zenith

V1 (lower limit) specify the wave number range for the output data (cm⁻¹)

TABLE B.3. INPUT DATA DESCRIPTION (continued)

TBOUND temperature (°K) used to compute a boundary.

If TBOUND=O, no boundary is computed (currently used for looking down)

NNLAYR number layers + 1

PAVE average pressure (mb) for the layer

TAVE average temperature (°K) for the layer

WK array containing the molecular column densities

for the layer (molecules/cm²) H_2O , CO_2 , O_3 , N_2O , CO, CH_4 , O_2

IF IPLOT=1

PLOTID

3 element array containing 30 characters of text
used as a beginning and ending banner on pen plots

V1 the range of wave numbers over which plot will V2 made (cm^{-1})

XSIZE size of X axis (in)

DX number of units of X per inch

YMIN range of Y-axis

WWSC the constant k in the expression $y=e^{-ky}$

PFASCORE P												
7_HIRACV												
T_HIRACL												
7_HIRACD												
P.ABSWRG												
7_EMINIT												
. E.S.												
P.E.DOWN		9										
PROPERTY FALLS	HVE SON A	la.	L=012365	PLOCKS		ALBSTONG	4414	\$800CFH2	¥ ;	CM066635	0 CH 0	C+261-940
Ē			L#942735	FOTAS	NXM	04000016	L CAS	CH CO 00 12	XP #1 EL	C-98 86 85	ANT LA	100000
	1				VOICOM	C#388627						
	PROCESH	CONVENV	L=0000247		N SZIG	CH000012	XSU9	CM 600012	XX	C* 30 0614	SUB1	CM 000 12
				BLOCKS	XTIME	C-010-0		CM303622				
	PROCRAM	15 M Va	L=856503	PLOCKS PLOCKS	FER		x208	CM003812	SIJBT	21 30 CONS	XPANEL	CM C 12000
8	PROCEAM	MOLET	7=00055	PLOCKS	XMOLEG	C+000124						
084	PRO GRAM	DARFAC	L=f06111	:		,						
	PROCRAH	STARC.	L=000256	BE OCKS	XX	0.000014						
		SHAMED	1 = 0 6 0 6 5 1	BLOCKS	XXX XOTOX	**************************************						
	PROGRAM	BRANC	L= 001633	BUDGKS		CM011324	MAIN	20 20 M	XA BS	CM000C35	OPANL	10903316
				PLOCKS	NPANL	C4000015						
2 3	PROGREK	CHINIT	L=000414	STOCKS		CM011636	Z T T	CH003864	Z	CM300635	OPAM.	2000
i i		E M O F	L = 8 8 F 25 4	SEOTES	HOAN	1718169 CE	E 1		XE HISS	C1606635	JAWA O	
Đ.	PRO GRA M	EHOOMN	9529w0=1	3LOCKS		CM016776	HAIN	CM003004	KEHISS	CH606035	UPAM	O1 6 C8 6 64
11110				HULKS	N 14 M	C#00F304				. `		
PRO PROPERTY PRO	PROGRAM	HIPACL	L=002267	BLOCKS		CH016513	MATH	CHOC 3C 04	MFW	CHBBBC35	NS.	O1 8 6 6 8 1 2
•	7 000			BLOCKS	XXX	\$1000CHO	SUBI	C#000612	XPANEL	CM000C.6	XTINE	2002000
		E L	767.184.57	PLOCKS	X T I ME	C4980994	A 200	2100000	YYM			
READING FILE	ILE	960	130404	2		7120 0 0 N		4	3	AL C. S. C. M.	9	6,444,4
			163705-7	BLOCKS	XXX	04 500014	SUMI	Of 868612	XP ANEL	CM300000	XTIME	CMBBBBBB
PRO	PR3 CPAH	CON WEND	L=03F171	SX3016	NFE	C4170335	x SUB	CH063012	WXK	C4 39 88 14	SUBI	CMB + 8¢ 15
24	PP3 GRAM	PANELD	1.500240	BLOCKS	NEN	CH " 90 8 35	xSU9	CH 000012	SUBI	CM000012	XPANEL	CMC 386 v6
				PLOCKS	x11%	4100014						
CONSULTING LIBPARY	G LIBPARY	FOF TOAM	1.46.00.0									
2	PROGRAM											
200	PROGRAM		F +0000 #= 1									
7 4	HE CREE	5 L OC	1=40CC7;	3	£		•	******				
20	PROGRAM	FORSYS	L=950503 L=950503	7.00.45	0 A. 10.	24000132		CMC 20023	STP. EM	STP.EMD CM0C0C01		
CAT	PROCORM	E11		PLOCKS	FCL.C.	CHIPOJZ	· •	, , , ,		1		

				39 6 73 80	040 040 040 040 040 040	04 c 380 c	2000	(4) 3 3 3 3 3 1 5 M
				PUT.FO	2 o	CON.PM C REM.FO C GET.FO C OPES.FO C	CLSV.FO C	CLSF. FO CHGGBLB7
	CHEC 13.4			CH988886		CM866C14 CM946c11 CM900666 CM80660 CM900060 CM90000	CMOGGGII	CM0 @ 0 C 11 CM 9 C C C 11 CM 3 C C C 11
;	.98.10.			CON. FH	EE O	ACA, FH JAPS, RH CON, PH TEPM, PH GFT, BT JAPS, RH	Ha. Sahi	уче <mark>5, сн</mark> 5E1, e1 СОМ, КН
E2000000000000000000000000000000000000		Снесовеза	CTSCSTS CMSCSTSS CMSCSTSS CMSCSTSS CMSCSTSS CMSCSSS CMSCSSS CMSCSS CMSCSS CMSCS CMS CM	CH008618	01100000000000000000000000000000000000	71688661 611888661 61188661 61186661 61186661 6118888666	0H900000000000000000000000000000000000	CM 2000 CC
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	78.70	בנרים.	761.5. 38.70. 98.70. FCL.C.	A09.04		COM. PR COM. PR COM. PR COM. PR COM. PR		0.000 0.000
## ## ## ## ## ## ## ## ## ## ## ## ##		CH000133		CM996931 CM6C35131 CMFFCC373		0.000000000000000000000000000000000000	CH899316 CH908919 CHC89918 CH66918	01200000000000000000000000000000000000
	FOL. 6.	FQL.0.	98.19. 10.10. 10.10. 11.10. 98.10.	ETO		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
9LOCKS 9LOCKS	i		810CKS 810CKS 810CKS 810CKS 810CKS 810CKS			90000 90000 90000 90000		81,000 31,000 91,000 81,000 91,000 91,000 91,000
11.000.00 11.000	L=000314 L=030314 L=030352 L=030352	L=000916 L=000916 L=097942 L=097125 L=0900241	L=850881 L=600658 L=600658 L=900638 L=90058 L=790578	L=001409 L=001409	L = 0000254 L = 0000101 L = 0000101 L = 0000101 L = 0000101	L== 00000000000000000000000000000000000	L=000057 L=000004 L=000003 L=000003 L=000003	L=800914 L=905049 L=995134 L=690671 L=590686 L=690686
SUPPLE CLOCKS BUFOUTS XTOYS XTOYS STRING SUPPLE SUPPLE OUTS	1		ы кин С. и и ь о ≠ и и	SYSTO PHIT,SQ CLSF,PH		# E # 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		C10.84 C10.84 C10.84 C10.64 C10.80 C50.80 C50.80
PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM	6206888 9206888 9-206884	PRJCRAM PRJCRAM PRJCRAM PRJCRAM PRJCRAM	P 20 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	CONSIL TING LIBRARY POJGRAM	ET ETERT	1	00000000000000000000000000000000000000	0.00 GeA w
				CONSTA				

PROCRAM CONSILING LINRARY	RLEG. 24	T=##0842 34.0545		כאפפטוני נוסאי בא	E43831.05		11361643	
KT KS Chd		Traine?						
PARTIE SE CHEME	FASCADE	" 7 4	+BUTUSO CXES.END+	1A= +181n27	LWA+1= +	+339504		
STATE NOTE STATE	A PF TVPF.	**********	· · · · · · · · · · · · · · · · · · ·					
FAS CONF	######################################	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	## 30075					
ACO SINE	POOCOEN	+813131	00000000					
EXF	************	4013527	140000	•				
46.4	PPOCPAH	+613565	190007 ×					
* C. L. C.	+ Table do	+913569	F360177					
FORSASE	PR 050 AV	256419+	ちゅうひかなる					
1.000	PROSPAN	+114555	30 46 (50					
SUF THE	PROCEAN	+614755	226666					
CLOCK	P9.06.04 4	+614/73	9.00031					
SURF OFFE	MW a DO do	+615124	0080035					
KIN YE	PROGRAM	+215061	6969667					
XT01=	PP OCPAM	+615070	016677					
REW INDE	PD COVAAN	+615111	1106637					
OUT F=	PPOC PAN	4615117	F986163					
140 Ct	PROC044	+015322	300816C					
094 TRY #	FP OCP A	+615562	100000					
ENDFILE	PR O'. P.AM	+0155,2	190726					
€01 0€ ° €	PPOC PA	+015543	3000316					
SASETSL	PP06044	115514	5450505 6406363					
E HE PE	F 10.024	1991180			•			
FECHSIS	##4.004# ##4.000	1619194	1					
FOR UTL #	100 FC 20 10	2179104	0 1 2 0 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C					
	20000 A	+616134	8888125				,	
- Inch	PROCESA	+015511	1 72 1000					
245 A10x	PR05844	+616742	2000001					
±01103	PROCPAN	+016713	49 36 67					
KONER	PPOLDAN	+017327	000000					
FLT 007s	PRO5.04	+217515	6064511					
KRI KESE	Haguas	910020+						
100.100		#50284 #50284	1/1 an					
		4821176	10111111111111111111111111111111111111					
	M PO UC DE M	+821252	0000100					
CITE ON	HEADEAG	+022652	6468025					
CS-MEGC	PP0694	+822477	25240Fi					
DOE N. R.	PROFOLH	151154+	1120000					
65.2	PROCOLN	+#21412	0000101					
Sec 1.59	PPOSPAN	+623513	9366651					
CHEKON	PO OC-9 A M	+452264	9766147					
CTMP. cg	PP05R4	+#23673	000000					
PTWR.SQ	PROC 8 4	+923734	25.25					
25. 25. E	a To Add	4114704						
WED X. 53	PRG-RAM	1604704	2021.17					
261.30	1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	211200					
		3/105472	700000					

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDQ

																																			:	= +030564 [MA+1= +)34573													
2179070	ر د د د د د د د د د د د د د د د د د د د	1000000 10000000	3760604	55,000	906:136	1,000			1010101	07.5.50		****	1100.00	サビザセして	1000000E	V 00000	310000	000007	200007	9616967	46.00.11	1600110	202200	7-6-30-6	7.00.00	326611			11661	601001	#000113	08(602=	5906365	3000000		もうもののじゅ 「メタジョアがある	0300256	166976	9316693	9999163	4600247	236865	1000052	90:0111	: 362736	3103124	F-1-0-505	JG c (45c	71: H . I
		+026367 B							i 57575n4								E 55.50				+636437 4	_	•				9433354	-								H H	:			31271					+9 12513			49.40.40	
PP Or o AM	PROTORN	PROCOAN	# WG 30 dd	PROCES	►¥a20dd	M 7090 ad	PROCEEN		PROGRAM	7 4 6 1 0 0 0	7 0 0 0 0 0	- A-0-24				200	COMMON	CO-#102	COMMON	10100	COMMON	MONE OF	COMMON	COMMON	HOMEOU	COH10.	75 C C C C C C C C C C C C C C C C C C C	1000 1000 1000 1000 1000 1000 1000 100	20100	NOM SS	NOMEO S	CCHON	COMEDY	7,6012		HIRACV	PROGRAM	» VoʻJO od	Mariad	be d'o Bu	PRCCOAF	PROCOAN	MB 0.000	H V OSO dd	PA OF PA	COMION	COMMO!	NOTE OU	
CLSV, S1	E SR. RK	HOUF. SH	00 x 30	Hd.CID	CLSF.S3	0508.84	WAREST	180.80	SKS 8. 50	545 F 5 5		14 SAS	100	24.57.4.1.		04°35'10	CFT.BT	98.4 FO	GET OF O	SKF L. F.J	GET . DT	0PE5.F0	HEMC. P.	Odine to	CLSF.FO	NA SAN	פיני ייני	12.00	1000 1000 100 100 100 100 100 100 100 1	STP.END	28. In.	FCL • C -	305 70	# T T T T		•	1	CILL TAX	VOI COM	POFILE	COMPEN	PANEL	#0L FC	OVRFEC	KIRACA	DE TOWK	134 ME	71K	ians.

TABLE B.4. LOAD MAP (continued)

	+9 75165	13 to	• 5150 4
		4 4 4 1	L M A + 1 x
	• • • • • • • • • • • • • • • • • • • •	7 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	70 50 00 00 00 00 00 00 00 00 00 00 00 00
	E A LC " E A	H THE COLUMN	# 42 ° 0 ° 12 ° 13 ° 13 ° 13 ° 13 ° 13 ° 13 ° 13
0000012 000062 0000616 +070463 +0706163	######################################		
# # # # # # # # # # # # # # # # # # #	FWB = FWB = + 0.00 M = 1.00 M	######################################	FMA = 1524 + 152
CONTON CONTON CONTON SF SHENT FASCOSE FASCOSE	HIRACL PE. 14PE. PROGSAM PROGSAM PROGSAM PROGSAM PROGSAM COMMON COMON COMMON CO	E. TVPE. PPOCPAM PROCPAM PROCPAM PROCPAM PROCPAM PROCPAM COMBON C	e. TVPE PPOGPAM COMMON COMMON COMMON COMMON COMMON FAMINA
X33'' VOI COM WXX FN. FL D9AL MEW HAI N	SEGNOTION OF THE SEGNOT	SECURITARY OF SALOS SALO	SEFFE PARC
•		A	

TABLE 8.4. LOAD MAP (continued)

200000000000000000000000000000000000000	PPP SECHENT ENIMIT	EMIMIT	£ 14 ×	+930824	+030504 EXFC. FMAR	+010544 WA +1 = 40 2 4 1 2 4	1 WA +1 =	761120
:	BLOSK M	PLOCK MAME. TYPE	***** FWA LEWGTH	LEMETH				
	OFFIL	COMEDIA	+831126	1000000				
•		FN. GLOBAL SEGNTHT.	SAFE TY.	. FWA				
	MEN	FASCORE	SAFE	+830443				
	MAIA	FA SC n DF	SAFE	u(50£9+				
********	dead manufactured and acceptance	EVSTP	FKA #	46.705.04	-Ulden Cyti.Eus.	4618664 10444-		
:	A OCK	PLOCK NAME . TYPE	FW	HENGIH.		*36.000	-1	
,	ENUP	HUC9084	+030594	0266254				
	MFANL	COMPOR	4436767	3077708				
	OFAM.	COMMON	+936764	30:00:00				
	KEN 1SS	FORTON	+036773	6950035				
•	FK. GL 09A1	FN. GLOGAL SE GMENT.	SAFETY	FWA				
	HAIL		SAFE	+036554				
HACOHS INSHUSS «««««««««	SE GHENT	EMD 3MH	FWA =	+83050+	**************************************	***************************************	1 4 4 4 1 2	40 17027
:	PLOCK N	PLOCK NAME . TYPE .		LENGIN				
	EMD OWN	PROGOAN	٠ ـ	2306256				
	HPAKL	COMMON	+6.16762	7634400				
	OP4 ML	COMMON	+036756	700000				
	XEN 154	COMMON	+035772	0000035				
:	FW. GLOBAL	FN. GLOBAL SE GHE 4T	SAFETYFHA	FKA				
	MAIN		2473	+030500				
*******	CH BLANK	******* CH PLANK COMMON FUAT		+0.57727 LWA+1= 119E125	1195125			
	1.							

TABLE B.5. TEST CASE OUTPUT

	03729779		T LIME = 2210.000		de service									
SFCANT = 1.00003000 IMIRAC = 1 V1 p V2 2655, 2185, TROUND 273,	1 LINE FILE FOR THE FASCODE REPORT	M20 m 1 1 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LOWEST LINE = 1990.000 HIGHEST LIME MLAYEP 1	*8136 -1 *8136 -1 *0136 -1 *0157 WOIGT REPORTMIN ATTRIDE SHAMES	OUTPUT FILE NO. = 10	SEC401 = 1.8000	PPESS (MB) = 525.85660	TEMP(K) = 264.36	COLUMN DEASITY (MOLECULES/CM**2) M20 = 9.3A0E+21 C02 = 1.449E+21	 H H H	DV(CH-1) = .01368080	V1(C*-1) = 2395,900	V2(CM-1) = 2155,603C	A0UMOVS(CH-1) = 3.532A

110. CIANGES =

. J.	
.96977 40. LINFS =	
.96917	51
AFRAGE MIOTH # .04914 AVEPAGE ZETA # CNINIT, WFILE, KFILE 11.18 .04.19999999999 SECS WERE WELDED FOR EMINIT	MLAYER 2 FIRST DV = . 189897795134351 GOMPUTER DV BEFORE HODIFICATIONC09497705134351
AVERGE MIDIN = CAIMIN, WELLE, AL	MLAVER 2 FIRST DV = . 189897 GOMPUTER DV BEFORE

																	2%
EHISS UF																	HO. LINES =
																PANFL .611	.94.373 NO.
VOIGT SURLE REPORT HIDLATITUDE SURAER																COMVOLUTION . 616	.03256 AVERAGE 2FTA E
REPORTHIDO	97	1.0000	332,87418	۶۲.	COLUMN DENSITY (NGLECULES/CH++2)	1.64.8.21	1.284E+21	K+10	2.9176+17	6+10	.149E+23	. 83 9226 68	2045.0006	2135.4830	2,3552	RE40 • 826	*
ST KYLF	MO. 3.	*	288 =	242.79	IS ITY (MD)	1.1.	1.2A		2.9	. 6.22	. 1.14					77.NE 6.8 15	TOTA .
VOIG 1 APPROX 1	OUTPUT FILE NO	SECART .	PRE-35 (MB)	TENPER) .	COLUMN DEN	H20	C03	* 02W	8	ž	8	DV(CH-1) .	* (1-H2)1A	* (1-10) ZA	BCUMPSICH-1) =	- •	AVERAGE WIDTH =

NO. CHANGES

.12745475E-07 .86547116E+33 .16422895E-88 .98387814E+30

TME TIME AT TME START (TMIS DATABLE) TMIS DATABLE (18 0. 18

TWE TIME AT THE END OF ENUP IS 6.954 ... 112 SECS MERE MEDIATED FOR THIS ADDITION

																701			
eurss up																NO. LINES =			
															PANEL.	.91514		+66	90+
E SURMER															CONVOLUT ION	7FTA =	7.630	.82 152182E+00 .951 88694E+11	.97130757E+00
ICLATITUN					2,										CONVO	AVERAGE 1 12 10	E 11	.17365535E-07 .32456155E-08	.17457#14 E-OA
1337 2 KYLE REPORTHICLATITUNE SUHHER	10	300	U++		ULES/CH#4	9.6		~ ^	. «	- m	333	0 60	96.0	701	READ . 026	.62828 KFILE 11	T OF EYUR EN ON FIL		
3333 2 KYLE REP	NO. #	1.00000	197,56440	222.87	ITY (MOLEC	6.815E+19 6.252F+28	5. 351E+	5.313E+17	1.13564	3.975E+23	.00613333	2095.0080	2105.0010	1) = 1.5701	ii K	OTH = , LFILE,	THE START OF EMUP IS IS WRITTEN ON FILE .	2095. 800000 2103.629600	2124, 797333
*006133333333333 2	OUTPUT FILE	SECANT =	PRESS(48) =	TEMP(K) =	COLUMN DENS ITY (MOLECULES/CH**2)	H20 =		M20			NV(CM-1) =	V1(C!-1) =	¥2(CH-1) =	ROUNDVS (CH-1)	11 HE 7.633	AVERAGE WIDTH = .62028 EMUP, MFILE, LFILE, KFILE	THE TIME AT THE S THIS OUTPUT IS HR P666666666677	1403	12 623

意味を表現されている。

MO. CHAMEES . ż 110. LIME: x PANEL . 044 .87572 .75072161640 .89597990E+13 .89964745E+17 MEAVER 4 FIRST DV = .00354065265461 COMPUTED DV BEFORE MODIFICATION = .00364665656401 .007306656666667 1 THE TIME AT THE END OF EMUP IS 6,739 .263 SECS MERE REQUIRED FOR THIS ADDITION VOIGT 1 APPROX TO KULE REPORT....MIDLAIITUDE SUMMER CONVOLUTION AVERAGE WIDTH = .01311 AWERAGE ZETA EMUP, MFILE, LFILE, KFILF 12 11 10 1 22.95.803839 .148556818F-[7 1488 2499.314809 .765148475-08 1 2899.317867 .739949285-08 1654 2165.860488 .1977785FE-28 THE TIME AT THE START OF ENUP IS THIS OUTPUT IN MRITTEN ON FILE 12 Ps .5 COLUMN DENSITY (MALECULES/CR*+2) 1.86630 124,38639 2095. 6886 . 9936667 OUTPUT FILE NO. = 13 7.612E+18 4.643E+28 7.852E+17 3.429E+17 9.185E+16 1.966E+18 2.566E+23 216.43 ROUNDVS (CM-1) = 711K TEMPIK) = PRESS (48) H23 C02 C03 C03 C04 C04 C04 SECANT = DACON-13 V1 (CH-13) V2(CH-1)

MLAYER 5 FIRST BV = .862319662196165 COMPUTED OV REFORE MOBIFICATION = .PJ231566219:185 #5823 3

NO. CHANGES . 511 40. LINES = MICS IN PACEL . JE1 . 52719 VOIGT YOURTE REPORTS....PICLATITURE SURHER AVERAGE MIDTH # "JR843 AVEDAGE ZETA = EMUP, AFILE, LFILE, KFILE 11 12 10 COMPOLUTION . 358 COLUMN DENSITY (**) LECULES / C4**? REAC . 920 .5436 5.01 (5E+10 2.51 (E+20 1.00 (E+10 2.12 (E+17 5.71 (E+15 1.21 (E+15 1.59 (E+23 2982.8865 2105-8030 .63238880 1.00750 77 .277 10 216.92 #0. €00M0\5(C#-1) = 11#F **OUTPUT FILE** V1(CM-1) = 421CH-13 # PRESS (44) TEMP(K) = SECANT = 0V(CH-1)

THE TIME AT THE END OF EMUP IS 9.734 ... 407 SECS MERE REGULAFD FOR THIS ANDITION

.62425535F+RT .86374275F433 .66914C75E+33 .76461C26E+33 .76226318E+33

.15354102F-u7 .33336669E-18 .3323563E-16 .45419312E-19 .47629836E-08

1 2489 1480

9.327

THE TIME AT THE START OF EMUP IS THIS OUTPUT IS WRITTEN ON FILE 11

. The second sec

The second secon

Martin Strategy

#129FP 6
#129 #66666333
#129FP 6
#129 #129 #129 #1
#129FP 6
#129 #129 #129 #1
#129FP 6
#129FP 6
#129 #129 #1
#129 #129 #1
#129 #129 #1
#129 #129 #1
#129 #129 #1
#129 #129 #1
#129 #129 #1
#129 #129 #1
#129 #129 #1
#129 #129 #1
#129 #129 #1
#129 #129 #1
#129 #129 #1
#129 #129 #1
#129 #129 #1
#129 #129 #1
#129 #129 #1
#129 #1
#129 #1
#129 #1
#129 #1
#129 #1
#129 #1
#129 #1
#129 #1
#129 #1
#129 #1
#129 #1
#129 #1
#129 #1
#129 #1
#129 #1
#129 #1
#129 #1
#129 #1
#129 #1
#129 #1
#129 #1
#129 #1
#129 #1
#129 #1
#129 #1
#129 #1
#129 #1
#129 #1
#129 #1
#129 #1
#129 #1
#129 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#120 #1
#12

457 40. LIMES = .67554 COMMUTINE AVERAGE MICTH = .38453 AVERAGE TETA EWJP, MFILE, LFILE, KFILE 12 11 13 RE & D . 80 115 8 88 2395,4803 2135,6632 14 9 OUMBYS CON- 13 18,367 W2(CM-1) = M20 C92 03 M20 CH4 22 DA CCH-1) V1 (CM-1)

NG. CHARGES #

THE TIME AT THE END OF FMUP IS 11,067

.19575333E-18 .19677933E-66 .56434156E-16 .51447625-16

. 69451 912C+19 . 39441 492C+11 . 3 4 56 11 75 + 10 . 94 3 6 6 6 6 9 1 . 6 4 7 4 6 1 5 6 + 11 . 7 7 7 8 7 7 9 1 . 4 5 7 8 5 7 6 1 1

.2156454 TE+53

THE TIME AT THE STADT OF EMUP IS THIS OUTPUT IS WRITTEN ON FILE 12 Px .5

1 2095.872526

.21765296-LT .27729265-LE .377567497-32 .124138866-07 .13754825-57

TABLE B.5. TEST CASE OUTPUT (continued) ML4 EP 7 FIRST DV = .EGL615142275981 COMPUTED DV BEFORE HODIFICATION = .CJ8615142275281 *889575 1

HO. CHENGES # 9 : 4 MO. LINES . eriss up 949EL 11237 .03164612F+13 .97383546F+13 .93384341E+53 .43647165F+13 .92648492E+13 .92648492E+13 .969318115+33 .96932127E+33 .8325967E+33 VOIGT VOIGT E FEPORT PLOLATITUDE SUMMER 11.616 AMERICE WIDTH = .37229 AMERICE ZETA = EMJP, HFILE, LFILE, KFILE 11 12 10 COMPOLUTION 2115254E-0 2115274E-0 144508E-07 144508E-07 147558E-07 1355106E-07 .12996471E-67 .37595367E-86 .37535367E-56 72-319458672. THE TIME AT THE START OF EMUP IS . THIS OUTPUT IS HATTYEN ON FILE 11 Pz .5 COLUMN DENSITY (MOLECULFS/CH**2) .1472 1.1168 8.34620 6.989618 7.053619 1.259618 5.9926416 1.693646 3.4196417 .48657500 2595.0030 2165.0000 DUTPUT FILE NO. = 18 1 2095.881888 148A 21.95.881888 1 25.95.889825 1 2897.189825 1 2898.949888 2488 2899.949888 1 2899.949888 1 2181.329888 242.46 BOUNDYS (CH-1) = 1175 PRESS (MB) = ¥11(CH-11) * V2((2H-1) = TEMP(K) = SECANT * DV(CH-1)

RO. CHANGES . # 5"M17 OH di 551m= .11532 .65129594F-11 .96981773E-88 .96962175F+17 .355962013 .95649(622017 .96195952501 .927123996031 .961846031 MLAYEP A FLESS29977648457 COMPUTED BY z .Just29977484457 computed by Before modification z .Just29977484457 its0575 b 1145 AT THE FAG OF FMAP 15 13,196 1,378 SECS MERE REGULATED FOR THIS ADDITION U APPEGAT TO KYLE FEPORTHOLATIFUT SUMMER 13.876 COMPOLUTION . 31. AVERSE WILTH = \$10262 AVERAGE ZFTA CHUP, MFILE 17 11 16 .238763/3F-36 .231264266-98 .289967465-88 .288341576-88 THE TIME AT THE STAPT OF EMPP IS THIS OUTPUT IS APPLITED ON FILE 12 1 2695-813-130 - 2992-876AF-87 1 2695-899125 - 2116912F-68 1 2695-899686 - 21159786E-58 COLUMN DENS ITY (MOLECULE "/CHMS) RE & C . 1827 .1472 2.55190 4,9130-17 1,11 PC+19 1,5290-17 9,1840-15 2,5410-15 5,4280-16 7,6970-21 2835.8838 11525533 2135.100 1.35030 = 10 1 21 82 .789648 2403 21 84.4899325 1 21 84.889638 1584 21 84.9998225 264.20. 21 02 . 709 025 Ç, 11 PF. 13.8 75 BOWNIN VS (C. 4-1) OUTOUT FILE PPESS(48) # V. (CH-1) = THEFTED B 2430 SECURT = CT-HC)AU Y1(CM-1) ¥

		.1437185CF-J7 .14465357E-R7	.e3261126+31 .e31807426+93		
545 549 269		4964749E-2P	. m3332956E+31		
_	299.949825	.13654552:7	43884 FSBE+3"		
		308f087E-07			
	2181.374.28	175425435-68			
17 1		33978966-16			
		313F865E-08	.95687404E+88		
	529699	. 29252031 E-36			
1564 21 64	529666		.900251206+08		
THE TIME AT THE . 818 SECS	END C	FENUP IS 14.696 AFQUIRED FOR THIS ADDITE	14.696 IS Abditicy		
MLAYER 9 FIRST DV s . 0 COMPUTED DV 9	9EFOR: 40D.FICAT	* **	.630527483[7984]3		
VOIGT 1 APPROX TO		KYLE REPORTMIDLATITUDE	OS SIMMFR	ENTSS	=
OUTPUT FILE	NO. = 18				
SECANT *	1.0000				
PRESS(H9) =	1.15596				
TENPIN	567 . 25				
COLUMN OENS!	COLUMN DEMS ITV (MOLECULE S/CH**2)	(Z++H3/			
	2.5045417				
. 203 C02	6.437E+18				
• 10	6.597E+16				
N20 8	7.156E+15				
* CD	•				
	5.355£+21	*			
DV(CH-1) #	.09657596				
V1(CH-1) =	2895, 4068				
V2(CM-1) =	2165.6666				
900MNY (CM-1)	57.41. = 11				
# I I	¥:	READ FOM	CONVOLUTION	PANFL	
17.5	75		1316	66 73	

MO. CHARGES #

### TIME START OF ENUF IS 15.365 ###################################	### The Start of EmuP IS 12.99.407 Start of EmuP IS 15.365 12.99.40468 -21641911-17 -6456704E-11 14.00 99.40468 -21169594E-10 -94567757E-10 12.99.40468 -21169594E-10 -953076757E-10 12.99.40468 -2116969E-10 -95307675E-10 12.99.40468 -2116969E-10 -95307675E-10 12.99.40468 -2116969E-10 -9530767E-10 12.99.40468 -2116969E-10 -95307697E-10 12.99.40469 -2116969E-10 -95307697E-10	### TINE STAFF OF ENUP IS 1.595.065600	## TWE START OF ENUP IS 2295.046.000								
1400 20 95 005 000 0 20 015 0	1		1931 9-67	M 13%		OF ENUP 15 H ON FILE 11	15.365				
1408 28 97. 189326 27 - 11153046 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	1 2095-00968		100 × .080504539216063	-		73-21614062	.64565788E-91				
248 28 97.189825 .14371454 E-87 .4125554 E-11 2497.189644 .14466224 E-87 .4125554 E-11 2498.259525 .44473172 E-88 .923413 E-93 2488.2899.949825 .1367895 E-87 .42542 24.25 2488.2899.949825 .1367895 E-87 .42542 24.25 2488.2899.949682 .1367895 E-87 .42542 24.25 2488.2899.949682 .1367895 E-87 .42542 24.25 2488.2899.949683 .136863 E-87 .42542 24.25 2488.2899.949682 .23588965 E-89 .92647 198 E-98 2488.2899.949625 .23588965 E-89 .92647 198 E-98 2488.2899.949625 .23588965 E-89 .92649 275 13 2288.2899.949625 .23588967 E-89 .96648 275 14.25 2488.2899995 .27511779 E-88 .9664967 E-88 2588.2899995 .27511779 E-88 .9664967 E-88	240 2897.109825 .143716% E-07 .032556.4511 2697.109600 .14466224E-07 .431811156.93 240 2896.999625 .44781224-00 .933314315.03 240 2896.999625 .13679995E-07 .425462425.33 240 2899.949825 .13679995E-07 .425462425.33 240 2899.949825 .13679995E-07 .425462425.33 240 2899.949825 .13679995E-07 .425462425.33 240 210.329629 .33545555-06 .95479186.33 240 210.329629 .23187575E-00 .954074616.33 210.239639925 .29312077E-00 .95407466.33 210.239639 .23187577E-00 .95407466.33 210.239639 .23187577E-00 .95407466.33 210.239639 .23187577E-00 .95407466.33 210.239639 .23187577E-00 .95407466.33 210.239639 .23187577E-00 .95407466.33 221.246.2317778E-00 .95407466.33 221.246.340748E-00 .9740748E-00 .95407466.33 221.246.340748E-00 .9740748E-00 .9730748E-00 .9740748E-00 .974074		14%C E-87		28 95. 889 668	.71151040F-88	.969020576+09				
2.03 205 0.55 0.55 0.55 0.55 0.55 0.55 0.55	2.60 269 569 669 669 669 669 669 669 669 669 6		10.0 × .0005045356063	_	520601.7982	.1437169C E-17	*6+3496645+14				
248, 2099, 94466 248, 2099, 94468 13166426 13166426 1415426 1415426 1415426 1415 248, 244668 13166426 1415426 1415 248, 248, 249668 1375464596 1415426 1415 248, 248, 24866 24966 141556 1415 248, 248, 248568 141556 1415 248, 2485, 248568 141556 1415 248, 248568 141556 1415 248, 248568 141556 1415 2486, 449688 141556 141556 1415 2486, 449688 141556	2.66.2895.964688		5609E-00 .9332191E+33 5632E-17 .443982425 5435E-27 .4639435 5435E-10 .92643127E+33 54562-00 .92643127E+33 74642-00 .9560127E+33 2637E-10 .95607691E+31 2637E-10 .966057E+13 17.3E-10 .966057E+13 17.3E-10 .966057E+13 16.100 17.3E-10 .966057E+13 16.100 10 FOR THIS ADDITION		22 96 . 569 625	.44783712E-FB	933014327 + 69				
245. 2099.949625 .13670965E-BT .4754024.2E+37 1 2699.949608 .13106542E-BT .4554024.2E+37 2 46. 2101.329626 .37594545F-BE .9244943E-37 1 2101.329626 .37594545F-BE .9249494E-37 2 46. 2104.94962 .2314524545F-BE .95687695E-37 1 2104.3499625 .23145245E-BE .956876-84 1 2104.3499625 .29312077E-BE .966867E-44 1 2104.349600 .23318967E-BE .966867E-44 1 2104.349600 .20318967E-BE .966867E-44 1 2104.349600 .20318967E-BE .966867E-44 1 2104.349600 .20318967E-BE .966867E-44	246 2899.949825 .13678995E-87 .4254824.2E+34 1 25.94.949689 .13186543E-47 .45548345949 2481 2181.329825 .77544435E-83 .924791945+31 2481 2182.789689 .27544435E-83 .924791945+31 2481 2182.789689 .2754459E-83 .9264967E-48 1 2182.789689 .27541779E-88 .9664967E-48 2 12.44.399699 .28318967E-89 .9664967E-48 2 12.44.399699 .28318967E-89 .9664967E-48 2 12.44.399699 .28318967E-89 .9664967E-48 2 12.44.399699 .28318967E-80 .9664967E-48 2 12.44.399699 .28318967E-80 .9664967E-48 2 12.44.399699 .28318967E-80 .9664967E-48 2 12.44.39699 .28318967E-80 .9664967E-80 2 12.44.39699 .28318967E-80 .9664967E-80 2 12.44.39699 .28318967E-80 .9664967E-80 2 12.44.39699 .28318967E-80 2 12.44.396999 .28318967E-80 2 12.44.396999999999999999999999999999999999		######################################		28 98. 964688	.44969096-11	.93 732 1916 + 33				
12099-9445688 .131809348-37 .465994875743 2462 2181.329625 .375644357-28 .924791937543 1 2181.329626 .375945457 .83 .9239774543 1 2182.789684 .231977656-6 .95687675-31 2482 2184.949625 .2318776-6 .956876-8 1 2184.3499625 .293128776-8 .96648775-8 1 2184.3499925 .2751177976-8 .9664877466-3 1 2184.3499925 .2751177976-8 .9664877466-3	1 25.99.497689		1435 - 17 - 44534434 1435 - 18 - 924741916 - 18 14542 - 18 - 924674917 - 17 14542 - 18 - 924674917 - 17 14542 - 18 - 924674917 - 17 14542 - 18 - 96489676 - 18 16 - 18 - 964899716063		528696.5682	.1367090%E-87	.438482428+34				
2483 23827 52828 538974642-68 956933276-33 2483 238276958 6238974642-68 956978-43 2483 2384-9648 52318978-68 956878-48 3 2384-96489 52318978-88 96689678-48 1 2384-96489 52318978-88 96689678-48 1 2384-96489 5275337598-88 95689678-48 8 7384 47 788 800 05 2009 13	2481 2182.769829 -275945155-8 -923947955-33 2481 2182.769829 -278974545-8 -956978175-33 1 2182.769829 -2781772-8 -956978-8 2480 2184.36969 -223869678-8 -956468-3 1564 2134.96989 -263869678-8 -956468-3 1564 2134.96989 -2781779E-8 -956468-3 6 71ML AT THE END OF SHUP IS 16.186 -821 55CS WERE MEDUIARD FOR THIS SHOTTION		14555-63 -923967955-33 14542-66 -956976815-31 2675-6 -956976481 19675-86 -9668975-83 1775-6 -96 -9668975-83 16 -186 18 -1865845393216963		10954. T. S.	131065436-07	46.5964896438				
2483 2382-759825 -238974642-66 -956933275-13 1 2182-75960 -2314525426-66 -956876416-31 2480 2164-849625 -293128776-86 -96689676-40 1 2184-949625 -293128976-80 -96648676-83 1564 2134-999625 -275117726-66 -966486430 66 71Mz at TME EMD OF EMUP 15 16-186	2481 2182.769829 .238974542-06 .956933275433 1 2182.709688 .231452435-06 .95687681543 2480 2184.90929 .283389676-06 .96689676-03 1584.389689 .283389676-09 .96689676-03 1584.2134.90929 .275137595-68 .96886766+30 6 77ML AT TME END OF EMUP IS 16.186 .821 95CS WERE MEDUIRED FOR TMIS BROITION		745-2-66 .956933275+33 2675-16 .956876815+31 2675-16 .956876815+31 19676-10 .9568875+10 1775-68 .958221465+31 16 186 17 FOR TMIS APOITION		21 81. 329606	375945156-15	.923967956+33				
1 2182,709604 .231452426-60 .956076016-11 2400 2104.049625 .293120776-00 .461609676-40 1 2104.049609 .203109676-00 .916400775-03 1504 2134.999995 .275117726-60 .916007466-30	1 2182,789604 .231432425-10 .956076015+11 2460 2184,740625 .293120775-00 .461609675+10 1 2184,349609 .203869676-80 .906486767+11 1 2184,349625 .27513779E-60 .906486744 E Time AT TME END OF ENUP IS 16:186 .821 55CS WERE MEDUIAED FOR THIS BROITION		12416-10 .954874816-11 28776-10 .9448976-11 19576-10 .9448746-11 17576-10 .9448-1446-10 18 16.186 ED FOR THIS SPOITION		21 82 . 769 829	.239976526-06	.956933275+11				
2460 2184.849625 .293120776-80 .961689676-80 1 2184.349680 .283186876-80 .91648675483 1584 2134.99955 .27511779E-68 .918271466-38 85 71Mz AT TME EMD OF EMBP 18 16-186	2480 2164,049825 .29312877E-88 .96168967E+88 1 2184,389689 .26388967E-88 .9688676F+83 1584 2134,999925 .27911757E-88 .9688676F+83 E TIME AT THE END OF ENUM IS 16.136 .821 5ECS WERE REQUIRED FOR THIS BROITION		20776-00 .461609676-40 19676-00 .96606766-13 17:78-00 .963027466-13 15 16.10 En for TMIS Endition		21 12, 709 600	. 2314 52436-11	.956876816+34				
1 21 04.389640 .28386967E-B0 .90048676783 1564 2134.99969 .27511752E-68 .36822146E+33 68 11Mz AT TME EMD OF ZMUP 18 16.186	1 2164.189689 .28388967E-86 .9C6A8F76F483 1564 2134.999675 .27511759E-68 .3C82746E+38 E TIME AT THE END OF ENUM IS 16.186 .821 SECS WERE REDUIRED FOR THIS ENDITION		1752E-68 .9C680F76F48 1752E-68 .3C822146E+38 15 16.186 ED FOR THIS BRDITION		2164.049825	.293120776-00	. 461669476+10				
1584 2134,999525 .27811773E-68 .30822146E+38 66 TIME AT THE END OF EMUP IS 16.186	1584 2134,999e9 -27911759E-88 .36822146E+38 E TIME AT THE END OF EMUP IS 16.186 .821 9ECS WERE REDUIRED FOR THIS ENDITION	•	1759E-68 .3C822146E-28 18 16.186 EN FOR THIS ANDITION 10 = .8885845393216963		21 84. 349688	.263169676-10	.966404766+13				
# 11M AT THE END OF MADE IS 16.186	E TIME AT THE END OF EMUP IS 16.186 . 821 SECS WERE REDUIRED FOR THIS ENDITION	1	15 16.186 ED FOR THIS ADDITION 100 = .0005045397216063		2134.999.05	.27511756-68	968221466+39				
. 621 SECS WERE MEDUIAED FOR THIS EPOINTON		1	IOM = .0005045393216063	ME 11ME	AT THE END OF	F ENUP IS REDUIRED FOR THE	16.186 IS APDITION				
IOM = .0885045393216863	AYEP 18 37 DV = .0105345393216063 OUTED DV BEFORE MODIFICATION = .0005045393216063 0575 R			TON det	TO KYLE REPO	47HIDLATITU		ST LAY	ER ENT	SS IJP	
ION = .8885845391216863 HIDLAIITURE SUMMER LAST LAYER	IOM = .888564529321696 IOM AIITURE SUMMER										

. 0065796A

DVICH-13

THE PERSON NAMED IN CO.

TEST CASE OUTPUT (continued) TABLE 8.5.

2095.010

91 (CH-11) #

FAWEL . 228	.01475 MO. LIMES = 433		22	9			2	90	2		2	2	9	=	9	1
COM OLUTION . 327		16.6 30	.63689568E-31	969417526+39	.969u2u55:+11 .A32554755+88	83100.845+39	933814146+1)	.42332173E+08	.435392776+13	+4490136E+11	,52479153E+81	.92396?53F+19	, 956 93 23 65 + 29	.956476766+33	.9(166769€+03	** *****
C 0## 0	8VERAGE 11 10	15	~	07 E-úB	2115:8686-68	495-17	495-38	11-35669644	1367 36 67 E-17	131071065-67	37 564752i-68	375% e50E-18	90-j95	79E-11	92-345	
READ . 617	.39187 DVERAGE ZETA	T OF ENUP	79-319141662.	.21169607 E-UB	15115.	14466749E-07	84-364858744°	おってい	136736	•	•	.375%	.2389755£F-06	.23143379E-61	1293136545-10	
TIME 16.836	AVERAGE WIDTH * .39187 BVERM EMUP, YFILE, LFILE, KFILE 12 11 10	THE TIME AT THE START OF EMUP IS	1 2095.87888		20 95. 6 19 600	28 97 - 189699	26 98.569 025		526646 .6582	789646.6682	21 11 - 329 225	2111.329601	21 62 . 7 6 9 0 2 5	21 02 . 709 600	21.54. 169:25	
.	AVERAGE EMUP, 4F)	THE TIME	1	1488	1 24.84		2488	#	2469	••	2433	7	5468	₩	246.	•

THE TIME AT THE END OF EMUF IS 17.654 .415 SET'S MERE REPUTRED FOR THIS ADDITION

USAGE NOTES

- 1. The user must structure the input atmosphere such that the ratio of the previous DV to the present DV is acceptable to FASCODE, (see the sample input data).
- 2. The program is written for execution on a CDC 6600 computer system at Hanscom AFB. Accordingly, the control cards input/output statements and plot options need to be tailored to the user's installation.

APPE'

FROGRAM LISTING

LISTING OF FASCODE PROGRAM

```
03/14/74
                                            OPT=1
                                                                                          FTH 4.6+426
      PROGRAM FASCODE
                       066100
1
                                                                                                                          200110
                                                                                                                          000120
                                                                                                                         000140
                C FAST SIGNATUPE CODE
                                                                                                                          660150
                         CCPMON COMSTR(250,9)
                         COPMON FF(7600).SF(700).VSF(225)
COMPON/MAIN/ RFILE, MPANEL.PO.TEMPO
COMMON/NEW/ NHUL, XIT(7), SECANT, PAVE, TAVE, PMOLID(7), NK(7),
                                                                                                                          000160
                         COMMON/NEW/ NHUL, XIT(7), SECANT, PAVE, TAVE, MOLID(7), WK(7),
10, V1, V2, NL 4YER
100HHON /BUFHD/ FILHD(10), THOLID(10), MOLIND(10), VLINHI
                        C
                                                                                                                          000200
                                                                                                                          000210
                C
                                                                                                                          000220
                         HPCL=7
                                                                                                                          000230
                         ITY PE -- 1
                                                                                                                          06 0240
                         PC=1013.
                         TEMPD=296
                                                                                                                          100260
                         KPANEL ...
                                                                                                                          CE 0270
                         LINFILER
                                                                                                                          06 6280
                         MFTLE=12
                         LFTLE=11
KFILF=10
                                                                                                                          000290
20
                                                                                                                          006340
                                                                                                                          000316
                         HLAYERED
                         DE THIER
                                                                                                                          000330
                         READ 910, (XID(I), I=1,7)
                                                                                                                          000340
                                                                                                                          21 1356
                         IHIFAC = 1 CALL HIRACV
                         THIPAC = 2 CALL HIRACL
IMIRAC = 3 CALL HIPACO
                                                                                                                          000360
                                                                                                                          000370
                                                                                                                          GE G380
                 C IF ISHIT .EG. 1 PROGRAP WILL COMPUTE EMISSION
                                                                                                                          000390
                                LOOKING FROM SPACE TO GROUND FOR EMISSICN LOOKING FROM GROUND TO SPACE FOR EMISSION
                 C ILCOK=1
                                                                                                                          000423
                 C ILOOK=0
                                                                                                                           060430
                         PEAC 920, IMIRAC, IEMIT, ILDOK, ISGAN, IPLOT IF (IEMIT, 60.0) XID(7)=10H APS COEFF
                                                                                                                          00 0440
35
                         IF ( (IEMIT.ED.1 ) .AND. (ILOOK.ED.0) ) XID(7)=12H EHISS UP
IF ( (IEMIT.ED.1 ) .AND. (ILOOK.ED.1) ) XID(7)=10H EMISS DHO
                                                                                                                          184319
                                                                                                                           26492
                          PUTHT 630, YTO FPINT 920, IMIRAC, IFMIT, ILONK, I SCAN, IPLOT
                         PEAD 940, SECANT
                                                                                                                           000500
                                                                                                                           20 0515
                                                                                                                           102525
                          PRINY+, "THIRAC = ", IHIRAC
                                                                                                                           000530
                 C TROUBD IS A TEMPERATURE WHICH WILL BE USED TO COMPUTE A C ROUMDRY. WHEN TROUBD = 0, NO BOUNDRY WILL BE USEC.
                                                                                                                           ir 0550
                                                                                                                           000560
                         PFAD 940, V1, V2
PRINT *, " V1 , V2 " , V1, V2
REAT *40, TROUND " , TROUND
                                                                                                                           11 1570
                                                                                                                           CCDSAD
                                                                                                                           406595
50
                                                                                                                           CC 601
                 C
                          READ 920, WHLAYP
                          RUFFER INCLINFIL.1) (FILHO(1), VLYNHT)
IF (UNIT (LINFIL).EG.C) STOP
                                                                                                                           CL 66 30
                                                                                                                           248733
                          PRINT 970, FILMS
                                                                                                                           00 0650
                          PRINT 960, (BMOLID(I), MOLINC(I), I=1, NPCL)
PPINT 970, VLINLO, VLINHI
                                                                                                                           06 06 86
                                                                                                                           01 05 90
                          IF (2- (MALAYRAZ) . NE. NNLAYR) GO TO 115
                                                                                                                           80 0740
                          HSTOR=MFILE
                                                                                                                           000710
                          MFILF=LFILE
                                                                                                                           30 0720
                          LFILE=MSTOP
                                                                                                                           060730
                          CONTINUE
IF (IEMIT.ED. 0) KFILE=MFILE
                                                                                                                           CB0740
                                                                                                                           05 0750
                          NO 280 K=1,NNLAYR
                                                                                                                           000760
                          PRINT 900
                          PETH JOU
PEWIND LINFIL
BUFFER IN (LINFIC-1) (FILHD(1), VLINHI)
IF (UNIT(LINFIL) .EO. 0 ) STOP
                                                                                                                           000770
                                                                                                                           000740
                                                                                                                           DE 0790
                                                                                                                           00.4800
                                                                                                                           .....
                          NLAYER=NLAYER+3
PRINT +, " NLAYER " , NLAYE?
                                                                                                                           £06830
                          IF (K.EC. NNLAYP) XIC(E)=10HLAST LAYER
```

	PRÚGRAN PASCO	DE 74/74	(1 07-1		PTN 4.0-426	13/14/74
78	1	READ SAS, PAVE	, TA VE			121041
		READ M.B. INC.	ik) • ik=1 • f)			26000
		De H <i>e</i> r obed ae \ Of DDA=D a	-0-30RT(TEMP	/TAVE)		20 98 40 00 98 78
		ALBAR-(8,10)*				10 6 6 20
80		a ymaqqu 36, A DBAR DZ . 4412 A	C-89818. 2810	VC\ 3VAT) 1F02*((SV+)	M400 h	99 94 90 94 96 96
				ALBAR-ALBAR + 4.		808910
		iff Diirac. Fo.				000050
41		ip (inirac . eq . If (inirac . eq .		• •		66 65 28
••		CONTINUE	01 01 -nponnt	•		966938
		orinto, Triret		•		111111
	C	IP (NLAYER.ME NO IS ASSUM	ED TO DE .LT.			90 6976 80 6980
90		ISCAL-ALOGAD (DA) - 5.			00000
		364L=10.**I\$0 IDY=(DY/86AL)				901990 901315
		DY-SCAL PLOAT				06 1 7 50
		60 10 170				001030
75		TYPE=OLOOV/NY IF(TYPE.GE.1.				0£1340 0£1890
		TYPE=1.8/TYPE				001000
		ISHALL=1			Au	301370
100	C 133	-4141 CO O	IED DA MELDM	MODIFICATION = ".	UV	061080 06119
•		IFITYPE . ST.				001100
		IFITYPE .GE. OV=OLCOV	1.2011 60 70	138		071110 071110
		17796-0				011110
188		60 10 170				001140
		174PE=1./(TYP			TITYPEAT	901150 941170
				PFLOAT (TTYPE+1)/FL		001170
		60 70 170				CO 11 Bu
110		CONTINUE POINT PRE				001190 001200
		3T0P				301210
	176 C	PRINT	TP (011210 011210
115		IFITHIFAC.FO.	1) CALL HIRA	:V		245110
***		IF (THIPAC. FO.				067500
		IFITHIFAC.EQ.	3) CALL HIRA	30		801266 GL1870
	C		HPT S=1			38 52 30
120		IF CIEMIT. NE.		_		901540
		IF INLAYER. ST	.1) 60 70 18	5		0[1310 861280
			ITYPE, ISPALL	, IOLOPL, LFILE, PFILE	•	007350
		60 TO 216				061310 061316
185	19¢ C	COMITMUE TO RE	ACH THIS STA	TEHENT		001750
	•	IF (ISHALL.NE	STOP " I	SMALL .WE. 0 -		001/16/
		IF (NLAYER.67 CALL EMINITES				901380 901380
130		60 TO 218	20041.000.01			067340
	C					07 1400 06 1410
	209	IF (ILOOK.EQ.		NPTS,ITYPE,LFIL) HH (NPTS,ITYPE,LFIL)		001#50
	C		THE CHECK COLOR			0 (1 + 3 0
133	57.6	CONTINUE				991440
		MSTOROMFILE MFILEOLFILE				001465
		LFILE-MSTOR				001470
444	\$30	REWIND 11				0(1480 601490
146		REMIND 12	•			001388
		KAUMET= 8				001510 001510
	9 4 n	KFILE=19 CONTINUE				661230
145	23.0	RENTHE 11				061346
	С С					961499 061430
	258	IF (IFLCT.NE	. O) CALL T	PLOT(IPLOT, MFILE)		001570
	336	STOP		•		901489

```
PROGRAP FASCOCE
                                      74/74
                                                  OPTO 1
                                                                                                    FTH 4.6+428
                                                                                                                                 23/14/74
                                                                                                                                      801398
150
                                                                                                                                      001600
                                                                                                                                      001610
                                                                                                                                      0016 20
                    111
                             FORMAT(1H1)
                                                                                                                                      001630
                    10 5
                             FORMAT(1MO)
FORMAT(10A16)
                                                                                                                                      001640
                    910
155
                      920 FORMAT(1675)
                                                                                                                                      001650
                                                                                                                                      0(1550
                       930 FORMAT(1M8,18A18)
                      00 FORMAT(10F10.7)

90 FORMAT(10F10.7)

60 FORMAT(90 SEGANT = 0,F14.8)

60 FORMAT(9x,A6.3M = .11)

70 FORMAT(90 LONEST LINE = 0F10.3, PHIGHEST LINE = 0F10.3)
                                                                                                                                      0016/0
                                                                                                                                      001640
                                                                                                                                      001690
                    980
                                                                                                                                      961708
                    978
                             FORMATIO THE RATIO OF OLD DV TO NEW DV EXCEEDS 2.0 . )
                                                                                                                                      861715
                    980
                                                                                                                                      861728
                                                                                                                                  03/14/78
                                                   OPT-1
                                                                                                     PTN 4.6+428
     SUBROUTINE HIRACY
                                       74/76
                              SURROLTINE HIRACY
                                                                                                                                       001740
    1
                                                                                                                                       001750
                                                                                                                                       001750
                                                                                                                                       001778
                                                                                                                                       061780
                                                                                                                                       501748
                              CALCULATES MONOCHRONATIC ASSORPTION COEFFICIENT FOR SINGLE LAYER *
                                                                                                                                       00 18 00
                                                                                                                                       0(1810
                                                                                                                                       801820
                                                                                                                                       001830
                                          USES APPROXIMATE VOIGT ALGORITHM
   19
                              001850
                                                                                                                                       001860
                                                                                                                                       0(1870
                             COMMON GNU(250),S(250),ALFAG(250),EPP(250),MOL(250),

EFOPTM(250),RECALF(250),ZETAI(250),IZETA(250)

COMMON FF(3600),SF(400),VSF(225)

COMMON/MAIN/ VFILE, MPAMEL,PO.TEMPO

COMMON/MEM/ MMOL,XID(F),RECAMT,PAVE,TAVE,MMOLID(F),MK(F),

C DV,V1,V2,MLAYER

COMMON /XSU9/LIMIN,ILC,IMI,V80T,VTOP,VFT,IEOF,IPAMEL,ISTOP,IDATA
COMMON /MXX/ NMF,DXF,NF,NMS,DXS,NS,NMVS,DXVS,NVS,NFMAX,NXSM
1AX
                                                                                                                                       001446
                                                                                                                                       31 18 30
                                                                                                                                       001900
                                                                                                                                        001910
                                                                                                                                        001920
   23
                                                                                                                                        001930
                                                                                                                                       081948
                                                                                                                                        001950
                              COMMON /SUB1/ MAXF, MAXS, MAXVS, MLIMF, MLIMS, MLIPVS, MLC, MMI, DVS, DVVS
                                                                                                                                        001970
                              COMMON /XPAMEL/ V1P, V2P, OVP, NLM, NSHIFT, NPTS
COMMON/XTIME/TIME, TIMROF, TIMCHY, TIMPHL
COMMON/VOICOM/AVRAT(201), CLD(201)
DIMENSION ALFCOR(7), ALFO1(7), U(7), SCOR(7)
DIMENSION XF(251), XS(251), XVS(251), XD(251)
                                                                                                                                       001480
   25
                                                                                                                                        001990
                                                                                                                                        002000
                                                                                                                                        002020
                                                                                                                                       002939
   30
                     C,
                               DATA MIF / 4/, DXF / 8.82/, NF /281/, NFMAX /291/
                                                                                                                                       002048
                                                                                                                                        002050
                              DATA NUS /16/, THS / 0.00/, NS /201/, NSMAX /251/
DATA NUVS/66/, DXVS/ 8.3E/, NVS/201/, NVSMAX/251/
                                                                                                                                        007040
                                                                                                                                        002070
                      C
                               DATA IENTER/O/, LIMIN/250/, MSHIFT/32/, MLIMF/2401/, MFTS/
   35
                      Ç
                                                                                                                                        102111
                                                                                                                                        862168
                               DATA SUBID /10H VOIST
                      C
                                                                                                                                        862110
                                                                                                                                        065750
                               IF (TENTER.NE.D) 60 TO 10
                                                                                                                                        005136
                              IENTER-1
NLIMS-(NLIMF/4)+1
                                                                                                                                        002140
                               NL IHY5= (NL IM5/4) +1
                                                                                                                                       302150
                               NOTE (DXYS/DXF) IS 16 AND (DXYS/DXS) IS 6
NSOUNDERLOAT(NWYS) P(DXYS/SXF)
NAXFER: IMF+MBQUNO
                                                                                                                                        502160
                      C
                                                                                                                                        082178
                               HAXS- (MAXF/4)+1
                                                                                                                                        ......
                               1+(4\EXAM)=EVXAM
                               CALL VOICON
GALL MAPEL(XF,XS,XVS)
CALL MAPED(XD)
GALL MOLEG(1,HHOLID,NHOL,TEMPO,TAVE,P8,PAVE,SCOR,ALFCCA,ALFB1)
                                                                                                                                        66 22 16
                                                                                                                                        642220
                                                                                                                                        11 22 31
   11
                                                                                                                                        003840
                               PRINT 900
                                                                                                                                        06 22 30
                      19
```

		MCA	7474	GP7=1	FTH 4.6-428	13/14/78
		PRINT	978. 5	SUB TO		802268
		T IMPOP	=TIHCK	IV-TIMPHL=8.		002270
35		PRINT		• (KID(I) • 1•	1,7)	062200
		RENIKO 120F=8				96 55 36
		PRINT		#11#		002300 002310
		PRINT				002320
68		PRINT	925, F	PAVE, TAVE		002330
					(H), H=1, NMOL)	102346
		DAD-BA		14.41.45		002350 802368
		048-(D) .ba		002370
45		DVVS= (DXV\$/0	XE) - DA		082380
				1180UNO) 20 Y/ E	•	065390
		PRINT (002410
				/FLOAT (MIVE)		002420
70		ML CONT				802430
		MHIONL				068440
	50	DO 58 1		XF		002450
	79	DO 60		XS		002460 602470
75	69	3F (1)=				062460
		DO 78		ZVS		06 24 90
	76	A21 (1)	-1.			6825 00
	C S	MOTTE	. weti E	'\ /YTM/T\ .T=	1,7),SEGANT, PAVE, TAVE, CHMOLID(M), M=1,7),	002510 002520
60				. NHOL) . DV . VI		002530
_	_			FILE, 1) (X10		002540
	_	IF (UN	I I (KFI	(LE).E0.0) ST	Op -99=	002550
	c	VFT=V1-	. P. 480	UMB		002560 002570
85		V80T=V				(*2580
		VTOP=V	2+50UN	D		6c2590
	C					00 5600
		XKT = 0.				062610
90	•			KT) - (1./XK	TO)	002620 002630
					TEMPS, TAVE, PO, FAVE, SCOR, ALFCOR, ALFO13	002640
		70 80 1			· · · · · · · · · · · · · · · · · · ·	062650
	80		K (H) *S	COR (M) + SECAN	T	01266i
95		ICAT= 9 Sumalf	= 6.			002670 062680
••		SUMPET				002690
	_	MCHNG=	2			002730
	C 90	66477W	4.0			002710
100	C	CONTIN	n E			0C2720 0C2730
200	100	CONTIN	UE			002740
	G					002750
				(TIMEO)		062760
195				0) GO TO 150 GNU,S,ALFAD,	FOD. HOLD	002770 002780
•••				(TTHE)	5.13.1067	002790
		TIMEDE	=TIMPO	P+T7ME-TIMEO		002800
	C					062810
110	C	IFTIED	r ent e) GO TO 140		0G2820 0G2830
***	č	MODIFY	LINE	DATA FOR TEN	PERATURE.PRESSURE. AND COLUMN DENSITY	062840
	C.					002850
		00 136		,IHI		002860
44=		M=HOL ((I)#U(M)		078510 062886
115				().LE.O.) GO	TO 130	06590
		ICHT= I				002900
				DEALFCOR(H)		002910
4	i)		0 (2 9 2 0 0 0 2 9 3 0
120	ı	12-500		ALPL+ALFAD) N+1.5		002940
		ALFY=A	VRAT (1	Z) FALFL		0(2950
) ALFY-AVRAT		062966
4 44	ì			DV) 50 TC 110		962979 062980
129	,	ALFYE		,unt 11 62 f 1 / 11	LFA0(I), ALFV, DV, M	062990

3	UNROUTINE !	HIMA	CV 74/74 OFT=1	FTN 41.0+428	03/14/76
			NCHN6=NCMN6+1		003000
	1:	10	IF (ALFW.LF.ALFHAX) BC TO	129	003010
	_		PRINT 980, CHUCID, SCID, ALF	ar(I), alpv, alphax, r	013180
130			ALFV-ALFHAX		063030 063040
			Henne-hen art		023050
	1	20	CONTINUE		00 30 60
			Sumal Pasumal Poal PV		0C 30 70
4.50			SUMZET= SUMZET+ZETA RECALF(I) = 1. /ALFV		063040
738			EPONTH(3)=EPONTH(3)*8XP(-6	od (1) o wet fac) ore calf(1) +	00000
			4 (1EXP(-SHU(1)	XXT() /(1,-EXP (-9MU (1) /XXT U))	00 27 30
			ZETAI (I)=ZETA		003110
			12644(1)=17		062750
143	1	31	CONTINUE		003130
			IF (NOMME.ST.100) SO TO 10	•	803148
	1	40	CONTINUE		0031 5 0 003160
	G			ALLE MAL DE GE MOR.WE.VE.VUE.VR.	003170
_				Calf, Mol, PF, 8F, V8F, XF, X8, XV8, X0,	05 31 80
145	_		C RTAI, 176 TA)		003190
	C	i	IF(1PANEL.EQ. 8) 60 TO 188		063200
	c	•	TATTANGE FEATOR OF 10 TOO		063210
		58	CALL PANEL (FF.SF, VSF.KFIL	.E)	003850
158	ĉ			•	063836
• • •	•		CALL SECOND (TIME)		00 35 40
			KPANEL= KPANEL+1		003520
			IF (15TOP.NE.1) 60 TO 148		002500
			END FILE KFILE		013270
155	1	16.0	CONTINUE	*********	003280
			PRINT 999, TIME, TIMEDF, TIME	SNA' A TULUC	063340
			IF (ICNT, LE.O) GO TO 170		003310
			AVALF#SUMALF/FLOAT(ICHT) AVZETA# SUMPET/FLOAT(ICHT)		013350
440			PRINT 960, AVALF, AVZETA, ICI	AT NO NING	063330
160	c			4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	003340
	1	70	RETURN		063320
	č				013340
	Č				003370
165	Ċ	:			3877.70
	•	000	FORHAT (1HC)		00 33 9 0 00 34 60
		104	FORMAT(1X, 7410)	- h	1:3413
		116	FCHMATION OUTPUT FILE NO.		013420
		11.5	FORMATCHO SECANT =+ F18.5		00 34 30
170		20	FORMAT (10 (1PE10.3)) FORMAT(+0 PRESS(+0) -+ F1	P. W/ ON TEMP(K) #9 F11.2)	10344
)25	FORMATICATHO COLUMN DENSIT	WIMAL PRINTE JAMES	3.3450
	`	930	1 / /(BX,46, * = * 1PE1	7140EEGGE3704-17	003460
		94 0	POPULTION BUICK-13 = PV12	.8/40 A1(CH-1) = 4L1-4/40 A5(CH-1) = 4	003470
		7 -0	1 F18.4)		003460
175		94 2	PARMATICITHA ROUNDVS (CH-1)	- ,78.4)	013490
		945	**************************************		01.5500
	•	950	FORMAT (* +++++++++++++++++++++++++++++++++++	•••••••••••F10.4,E14.3,3F10.6,TB)	003410
188		955	FORMAT (1M0,10x,*TIME*,11	X'-SEVO-'4X'-CCMAOFOLION-'78X'-NUMFF->	00 3# 30 00 3# 59
		960	FORMAT (*0 AVERAGE HIDTH C * NO LINES * 110, *	H -F10.8, - AVERAGE ZETA = -F10.8, NO. CHANGES = -110)	0
		978	FORMAT(1H6,5X,A10)		06 35 60
	·	-· -	END		803970

SAZ LOOL ENG	ROFIL	.T 74/74	097=1	FTH	4. 6+428	83/14/78
1				ALFAG, EPP; HOL)		963940
		COMMON /BUFE/		iz , 4 60 1 , 4 top , 3FT , 1 60F , 1 pak Ing c	IEC 1121 OS 11041 4	40 30 60 40 32 6 0
		DIVENSION ONU	(1), \$(1), (LFA8(1), EPP(1), MOL(1)		083610
•		DATA LIMPIL /	3/, 11 /2/,	15 /5/		06 36 30 06 36 30
	8 10	READ "LINFT				002640
	\$ 10	IF (FOFELING)				86 36 50 86 36 50
10		IF CUMBTILINF	IL) .EQ. 0	60 TO 89		003670
		IF (HMEC.ST.L IF (WMAX.SE.V				66 36 66
	5	READ (LINFI	T) AMIN			403744
15		PUPPER IN CLI IF (UNITCLINF)U(11), GNU(12)) 2769		003710 363720
• •		60 TO 18	-			003730
	\$ 3\$ 30			((I),ALFAB(I),EPP(I),MOL() ~U(31),MOL(LIMIN))	1) , 3=1, MREC)	047270 387630
	76	IF CONTILINE				663750
26		ILC=1 IHI=HREC				00377 0 003700
		IN (AMIN' BE'A	907) 60 TO	! •		003790
		DO 48 T=1,NRE	C			9(3840 9(3840
23		ILONI IF (BMU(I).6E	T 08 17089.	50		10 30 20
	40 50	CCHTINUE IF (VMAX.LE.V	708\ BFT:BH			0 (38 5 8
	74	no ee Imi, NRE				003050
		INI=I				00 30 60 07 36 70
30	60	IF (GRU(I).GT	.41091 60 11	, ,,		003000
	70	IF(IHI.LT. NRE	C) IDATA=1			003090
	80	RETURN PRINT 920				003910
35		IEOF=1				00 39 30
	C	RETURK				003430
	C		AP 2245 AN	0.000		00 3 96 0
40	920	FCRYAT (* END END	OF FIEE UN	0124-1		003970
SUB ROUTING	CONV	FNV 74/74	0PT=1	FTN	4.6+428	33/14/78
1				fopth, recalf, Hol, FF, SF, VS	F, XF, YS, XVS, XD,	663486
	,	C ZETAI "IZ Componine Wi		(7), SECANT, PAVE, TAVE, HMOL	Thire	3 PPE
	•	C	DV . V1 , V2 , NL	AVER	,	90-019
5				mi, arot, atop, aft, ifof, ipa Hus, oxs, Hi, NWVS, DXVS, Hus, I		
		1AX	~ · · · · · · · · · · · · · · · · · · ·		ar wan gasaan ya ya sa	304040
				14 xys, Hlimf, Hlims, Hlipys, , Tincny , Timphl	MF0'M,I'DA2'DAA;	\$
10		COHHON VOICO				904070
		DIMENSION GAU		(1), REGALF(1), MOL(1)		004080
		DIPENSION XF				884100
4.5		DIMENSION XD		• • •		004110 GC4120
15		CYFF ZELOND ((4)		304130
		RATYX=DVVS/DX				004140 804150
		CONF-DAYS/DV				084160
\$0		COMS- DAAS/ NAS				884178 804188
		DO 40 1=1LO,1				064198
		DEFTHISEFORTH IF (DEFT HI.LE.		,		054230
25		IS=ISELU(I)	V47 00 10 4	•		00 46 2 6
		STRUMPERTHING				004230
		Olution Profit Line	74-0F1.41511			

1	MOROWTINE CONFUN	74/74	QPT=1		FTH 4.6+428	83/14/78
	751	OPE- RECALL	PERSONALE SA			967529,
			-VFT1/DVVS			064590
30	BFV	-FV8/23L(DPE 390			804278
		x= (ZIMT+8)				00 42 80
	•		MAXVS) 60 T	0 20		604290 004300
	• • • • • • • • • • • • • • • • • • • •	ST=2 -1				004310
		TO 50				004320
35		N= (Z JNT-B				604330
		MF= (ZZMT+(MS= (Z ZMT+)		•		664340
			MIN- 2) - 21 M1	3 *2 SL OPE		004350
	725	TWSe IFL CA	71.041W31-Z	NT-CONS) -ZSLOPE		004360
40	76.	ZWS4 17L OA	T(_MTMF) = 21	HT CONF) - ZSLOPE		00+370
77		THLOLL SE				084300
		THENENT				004390
	JF=	LLOTHENE NL				004400
		= Z VS+Z SL0	PE			304410
45		28+28LOPE				75443C 754400
		ZF+ZSLOPE				004440
		3-1831775				004450
		=ABS (75)+				064460
		-483 (ZF) +				004470
50			JJ) +STRL= X1 } +ST RL = XS ()			034400
				ZF)+STRD+XD (ZZF)		004490
		TINUE	14914F. W. 1			004500
		TINUE				604510
55	71.4	STATUT				054580
	c <u>1</u> 1	DATA- 8 FOR	HORE DATA	RIQUIRED ** IDATA	1 IF 40 MORE DATA REG	NIMED 304230
	IP	PHELO IDATA				004540
	60	TO 68				004550 314563
	_ 40 COM	ITINUE				664570
60	-	INEL-1				004580
		PYLAST+1				0.4590
		L SECOND		••		008493
			A+11ME-11M	. •		016450
	C RET	rumu				014623
65	ENC	,				004637
•	SUPROUTINE PANEL	74/74	0PT=1		FTM 4.6+428	23/14/79
						554445
1	SU	PROUTINE P	ANEL (FF, S	f, vsf, kfile)		064646
	60	HHON/NEH/			TAVE, HHOLID(7), WK(7),	00465i 01466i
	C		DY, 41, 42,	HLAYER		
	CO	HHON /XSUE	D/LIMIH, ILC	, IHI, VBOT, VTOP, VFT	, IEOF, IPANEL, ISTOP, ID	004680 CC4680
5	ÇQ	4HON /5U81	Y MAXE, MAX	S, MARYS, NLITP, NLIT	S. HLIPVS, NLO, NHI, DVS,	0(4690
	CC	MMON / X PA'	156/ 412445	P.DVP,NLIH,NSHIFT,		004790
	CO	PRONTING	(1), SF(1)	of, Timony, Timpml		004710
		RENZION 2		y +3* 14*		0.4720
		FF ZECONG				064730
10		8=-7./120.				004740
	-	1=105./12	_			004790
		2=35./120.				00:1760
		3=-5. /120.				004770
15	X1	0=-1./16.				087400 067411
	•	1=9./16.				0(4832
		TOP=0				004810
		HI= (VS- VF				004820
		(NHZ.GE.	NMHI) ISTOF	m.s. .= 7		004830
50			3.1) WHI=WA	IT &		004840
		XPRONLOOM				004850
		PR= NH I = NF NL D= (NL D= :				004860
	īŤ	MATERIAL PART				004670
25	7 SLO	HI FUNCTION	N VALUES ME	EDED FOR SUBSERUEN	IT PANELYS ARE SAVED	004883
€ 3		10 J=1.8				064990
			F(LIMHI+J-!	13		204962
			LO,LIMHI,4			004910 004928
	J.	15=(J- 1) / 4	+1			Ar 444 p

	SUB-ROUTING PAR	RL 74/74	OPT=1	FTH 4.6+428 B	3/24/76
31	,	SF (J) = SF (J) +V:	RE 1.1VS 1		004930
-					
		1 (348+5)			004950
		3F (J+Z) #3F (J+)	8)+x30-(4;	BF (JA8-1) +A2L(JA2+5)) + X11 • (A2L(JA2) +A2L(JA 2+	
3	•		3)+×83*45	r (Jus-1) + x 0 2 = u sf (Jys) + x 0 1 = us f (Jus+1) + x 0 6 = y sf	064970 064980
		7 (7A2+S)			004990
	20	CONTINUE	MT . A.		005000
		70 38 J=NLO, W JS= (J-1) /4+1	HI 9 4		005010 805020
-		FF (J) =FF (J)+2	F (JS)		\$05030
		FF (J+1) =FF (J+	1) •×80°5F	US-1)+x81-86 (US)+x88-86 (US+1)+x82-24(US+5)	005048
				r (JS-1) +SF (JS+2)) +X11+(SF (JS) +SF (JS+1)) (JS-1) +X02+\$F (JS) +X01+\$F (JS+1) +X00+3F (JS+2)	00 50 50
	30	CONTINUE	37 YA 90 - 81 ((A2-1105-0-/A91-401-5-/A2-11-460-3-/A2-1)	005050
41)	IF IMPTS. ED. 0			0C 50 80
		DC 48 J=WLD,J			008090
	48	YP= YF 1+FL OAT (, PRINT 988, J.1			065100 865110
	**	יישרים פו מס			3(5120
51		VP=VFT+FL DAT (00 51 30
	56 60	PRINT 908, J,1 CONTINUI	4 (D) 4 Ab		005148
	••	00 78 J=1,6		•	065150 005160
	70	SF(LIMHI+J-5)	SFSTORCU	•	005170
31		WLIMPWYI-MLO+			065180
		V1 P= V FY + FL DAT (0051 9 3 805200
	C	VIP IS FIRST			005210
	C	USP IS LAST PE			062550
60		WRITE (KPILE) WRITE (KFILE)			0C5230
	•	BUFFER OUT IKE			003240
		IF CUMITERFILE) .£0. 0) STOP	005260
	•			(F (NLO), FF (NHE))	005270
69	•	IF (UNIT(KFIL!			205286 005290
		IF ITSTOP.En.			765305
		JF#1			015311
71	1		MAXF		05720 05330
•	80	JF=JF+1			009330
		00 40 JaJe 441	(F		005750
	*0	FF(J)=6.			005360
79	•	J3=1 D0 100 J=NLTH:	EXAM.		CL537^ CL538:
•		3f (J3)=3F (J)			005390
	100	J5+J5+1			865480
	116	00 110 Jajs,40 5F(J)=0.	185		CC5410 DC5420
80		JVS=1			005430
		DO 120 J-MLTH			005440
	498	VSF (JVS) = VSF (.	»		005450
	120		AXVS		00 5460 06 5470
85	130	45F(J)= 8.			005480
		NLO=NSHIPT+1			005490
	140	CALL SECOND (•	065506 005510
		RETURN	. 4 9 - 1 P - 4 P - 4	•	005520
90	•				66 2220
	č				069540
	C 94.4	FORMAT (110,24	X.E12.5.F	(12.5)	06 55 50
	700	END	··· , ~ ~ ~ ~ * * * * * *		005570

	gne sont Inc	HOLE	74/74	097-1		FTN 4.6+428	53/34/76
1	l		SUBROUTINE NO	LEC (IND, MAGI	.ID.NHOLEG.TEHPS.TEHP,	.pv.p. 9gor, Alfcor.	003500
		(C MLFO1)				46.55.40
			DIMENSION WAS		11, ALFCOR(1), ALFO1(1)		003400
•	}				, 3~~33(M2 (7) .	994616 967628
		:		· · · · · · · · · · · · · · · · · · ·	.0V0(?),RUTFAC(?)	,	00 96 30
	1	C					003640
	ı	c	DATA MYOS/6.8	540E \$3* BC	%73/1.3005E-10/, CLI(M1/8.997988E 10/	9(94 90 00 94 4 0
11		•	DATA MM. SMASS		. 42.43.43,44,44,040,1	OTFAC /	003670
•		8					007660
			1 SH MED .SH		3 ten inso ten ico t		
			2 10., 3 3.	***			
19	1			64. j . 1183.	3 , 1804.9 , 2143.3 ;	2914. 1485.3	, 085710 , 005720
••				1 ,	1, 1, 1,		•
				67,3 , 78 0 .		1933.3 , 0.	. 005740
			7 1 3785.0 . F3		1, 2,		, 005750
21	1		3755.0 , F3 9 1 .	49.3 , 1042. 1 ,	A .		005740
•	•		Å 9. ;	J			. 005780
						3, 0	. 009798
				0040 . 1.049			•.
21	1	c (1,5,	1.0 , 1.	7 , 1.0 , 1.0 ,	1.5 , 1.0	/ 005010 005020
•		č					062830
		Ċ	HOLEC MAKES T	HE HOLFCULAR	IDENTIFICATIONS		005840
		C					825050
36		C			CH THE LINE INTENSITY		
30		Č	IENTERRIUR	E DEPENDENCE	OF THE VIB AND ROT F	MAITITON POUP	0(4870 06480
	+	C					DESAVO
		¢			HIGH THE COLLISION WI		ED 069900
•		C			ON PRESSURE AND TEMPE		66 59 10
31		C C	182 128528	STURY DEFEND	ience is taken as (to/	7) ** 0. 3	05 92 0 08 92 0
		č					009940
		C	ALPEL CONTAIN	S THE COPPLE	R WINTHS AT 1 CM-1		015957
		C					005968
40			IF (IND.EQ.2)	60 10 58			015971 015980
			ACMICYN				005990
			CJ 18 M=1.N40	LEC			406035
			n (H*T)= nT (H)				046413
47	ı		W(M, 2)= k2(M)				050000
			H(M,3)=W3(M) H(M,4)=W4(M)				0E 0 & 9 0 9 4 0 & 3 8
			HD(H, 1) =H1 (H)				006050
			HD (H, 2) =H2(H)				006060
31			ND (M, 3) WH3 (M)				206.70
			HT(H, 4) = H4 (4) FL H2 = 4L O6 (2.)				006085 0060 9 0
	:	10	HMOLID(H) =HM (M)			006100
			F4 0=FLH2+ 2 . + A	406-8 0172/10	LIGHT *CLIGHT)		006110
99		**	RETURN				0:6120
	•		CONTINUE PRATIO=P/PB				00+130 00+140
			TRATIO- TEMPO!	TEMP			004190
			XKT=0.6951-TE	45			006160
••			00 30 Hez, MO				006170
			3COP(N)=04RFA		10,040,407FAC, W, ND, ND	IM*MADIM!	00 61 8) 00 61 90
			ALFEL INDESCRY				004570
		30	CONTINUE		· · · · · · · · · · · · · · · · · · ·		015000
41			RETURN				069550
			EM)				006230

THIS PAGE IS BEST QUALITY PRACTICABLE

FUN	CTION OVERA	C 74/74	0FT=1		FTH 4.6+426	3/14/75
				, QVB, ROT FAC, W, ND,	MTTM. NVDIP)	004240
1		PURCISON CONT	(1) . ROTFAC(1)	*********		01 67 Bu
		DINENSTAN HI	H) (IH, (HTTVH, NTO)	CHIOVH, KIG		000300
		Qve1.				075600
\$		DO 10 1-1, NV				96290
		2A=7°-£Xb1-N	[g. 8) 60 70 28 [m.]}/XKT}			006500
			GT.1) SV=SV**NO	(H,I)		004310
	10	6A= 6A\2 A				864228 864258
10		BALLOMN BALLOMN	4) / QV) + ({ TRAT 10)	***************************************		006340
	C	MEIONN				666330
	-	END				306360
SURR	OUTINE SH ap e	IL 74/74	0PT=1		FTH 4.6+428	03/14/78
1		SUBROUTINE S	HAPE L (XF, XS, XVS)		006370
•		COMMON LAXX	KMF, DXF, NF, NMS	, DX2 , N2 , N N Y5 , D X Y 3 ,	, ras , nfmax , msmax , nas	788230 0.6396
	1	lax Bindustan Ve	(1), X\$(1), XVS	*13		00 44 00
5		AFOUNS(XS) #1	·\(1.4x\$)	•••		06440
•		3FH (X2) =A1+9	11-X5+C7-X5-X5			05##26 05##30
		A2 b f 155 - 75+	85.X5+C5.X5.X5			00000
		V0 (50) = (7 · +3	3202) /(1.+?	4)/(1.478**2**3 4**2)**5		0(6456
10		C0(207=1./()		• • •		516463
	r.	KATCH AT 71 F	ALFHIDTHS			40 84 7ú 81 64 80
		7104.				0(6490
		#1=40(21) B1=80(21)				006531
19		C1=C0(71)				006210
• '	C	MATCH AT 78 H	ial futit ps			01.6521 01.6531
		72-14.				076540
		(55)04=54 (57)08=56				064550
20		(25) 2005				16561
		BECEI#1./(5	-45I4(1.))			056570 166635
		TOTAL O.	PWAY			006596
	10	DO 10 1=1.00	784			00 6699
24	A 4		(XLORNZ (g.) - SF	1(0.))		00.047
		SUMEXF(1)				016620 016620
		_ から 20 JJ=2+1 				206640
		XENXOX.	T 1 - tive			606650
30			t + (XL DRN Z (X2) -5;	N (42))		788810
		SUM=SUP+XF(11) - 5.			07 38 J O
	\$0	CONTINUE XF(NF)=0.				00 66 90
		SUMESUPPOXE				306700
35		TOTALATCTAL	+5(IH			906719 986720
••		00 70 I=1.N	SHAX			02 7430
	30	XS(I)=C. YG(4)=PFCPI	+ (57N(6.)-43FN(0.))		006747
		SUMM XS(1)	13: 11(00: 10: 10: 10:			006750
40			M23542-7 007			026760
		. Sett ga rg -ttp:Taggmex				00 87 80
		X 2 - X - X				003790
		X51 JJ) = #ECF	X+6-244(4%) -A-244	(X S))		0,6800 00 681 0
45		SUMBBUMAXS	33;*8.			06 68 20
	40	CONTINUE NS1P=NS1+1				006430
		00 è0 77= N;	1 P. NS			00 6640
		X=FLDAT (JJ-				988890 986833
56		ASAXAX	T. (XLDPNZ(Y2) =V	\$FW(XP))		00 66 73
		シンスト かんじゅんいい		OI THE PECE		008830
	50	CONTENUE				006890
	- •	X21 N43=3.				úL 6 933

	SUB ROUTINE	SH APE	L 74/74	007=1	FYN 5.0+628 8	3/14/78
35		,	SUM=SUP+DXS			*****
•			TOTAL - TOTAL +SI	M		000050
			00 68 7=1 .WS			86 6 930
			KY \$ (1)=0.			996 9 40
			AA2 (1)= ME Cb1+/	/SFH(0.)		1106.61
60			204=XA2(1)		•	116971
			HYS1=FLOAT (HH) 1	111700
			DO TO LIPE, NY			100000
			X50 X ₀ X X04f041 (JJ-1) (UAVO		
41	ı		X 42 (JJ) = REC+ I'	VSFM(X2)		007010
•	•		3UM=2UM+XY3(J.			007020
			CONTINUE	-		807030
			NS1 F-HY51+1			007040
			DO SE JUNESTE			947959
71)		ソーアレロムア じょうーえり	•DXA3		067640 467679
			XL- Y-X			30 70 00
			XA2 (77) = SECA I.		·•	867698
			T) SAX+MASHMAS	11-4:		927198
			COMTINUZ SUM#SUMPDXYS			067110
71	•		T OT AL =T CT AL + S	1111		957550
			RETURN	• • • • • • • • • • • • • • • • • • • •		007130
		c	46.644			087140
		č				107150
		č				007169
-	•		FNB			007170
	SUBROUTING	E SHAPE	£D 74/74	0PT=1	FTN 4,6+428	C3/14/2A
						"A 74 60
	1		SUPPOUT THE ST	APED(XD)	NMS, DYS, NS, NNVS, DXVS, NVS, NF "AX, NS MAX, NVS M	007183 007193
				NWF , OXF , NF 1	MM2+ A42+ M2+ MMA2+ DYA2+ MA2+ MC MV FILS . MV 1 A44	617220
			14X			007210
	_		ACTION XO		471	3. 722.
	\$		FLN2=ALOG(2.		***	017230
			RFCPI=1./(2.			063543
			X DNORMS ST RT (367252
			TOTAL OF			067260
1	0		00 10 Iv1, NE	4AX		007270
	, -	19	x0(1)=0.			06 27 00 07 29 0
			XD (1) = X DNORM	- KG # NZZ (0 *)		007300
			SUMM XO(1)	_		007310
	_		N. 2 = LL 82 00			267320
1	15		X=FLOAT (JJ-1	- Da-		007336
			X5477) = X54X4 X54X4X	HO) (AMEGATE)		007340
			SUM=SUM+XD(J		•	00 7350
		20	CONTINUE			067360
	2 9	•	AC (NE)= 0.			007370
•	. •		SUM#SUM#OXF			007380
			TOTALETCTAL+	MUZ		ar 73 %
			RETURN			907408 887418
			FMA			80.478

sequential as	2:00 74/74	097-1		FTH 4.64428	13/16/70
1	SURROUTINE VO	ICON			007420
	COMPON \ADICO	MY AVRATIZED LICLD			007430
C		OPPLER FUNCTIONS (SECOMPOSEC OVER	THE INTERVALS	967448 887450
3 6	WEIGHTING FUR		VOIGT		007460
	DATA (AVRATE)				907470
	C .1010101014		.1005400E+01,	.1006167E+01, .1019922E+01,	807480 807490
_	C .1888#81E+8	11053670	.1058455E+01.	. 1031 4696 + 01,	807900
19	C .1834547E+6		.1643000E+01,	.1044039E+01, .1057282E+01,	887518 887528
	C .194794E+		.100-6936+81,	. 18712596 + 81,	06 75 30
	C .18748796+0		.1002250€+01.	.1006 0276+01,	987849
19	C .1189059E+(.1097661E+01, .1113976E+01,	.11016926+01, .11102066+01,	987395 86796 ₉
	C .1122499E+1		.11318016+01,	.11357788+01	887575
	C / DAYA (AVRAT()	1.7541.401 /			907580 907590
	C .1148 328 ++		.1149665E+01,	.1354441[+01,	907608
50	C .1199292E+0		.11692202+91,	.11743192+01	807610 807620
	C .1201820E+		.1190000E+01,	.1195509E+01,	067438
	C .1224 85 4E+8		.1236169E+01,	. 12423082+01,	067643
25	C .1248712F+0		.1201799E+81,	.1268 276F + 01, .1298 313E + 01.	807650 807660
-	C .1202052E+0	113110748+01.	.1310466E+01,	. 132640 X+01,	007670
	C .1334290F+6		.13\$ 0520E +01,	.13586497+01, .1394040E+01	007680 007690
	C \	1, .13761156+01,	.1384991E-01,	*1244846407	207740
30), T=81,120) /		44.794.635.444	007710
	C .1403291E+8		.1422360E+01,	.1432197E+01, .1473735E+01,	957798 957798
	C .1484654E+0	114956486+01.	.15072928+01,	. 15189998+31,	217746
35	C .1530965E+0		.1955740E+01,	.1566563E+01, .1622986E+01,	007750 007760
3.	C .1637487F+0		.166 2006E+01.	.15849JRE+31,	007770
	C .19682C9E+3		.1535943E+01,	.15203696+01,	007780
	C .15051445+0		.1475739E+01,	.1461539E+01, .1407913F+01,	007790 007800
•0	C .1395264E+0	1, .130 29 0 5+01,	,1770836E+01,	.13540435+41	0.7613
		7,T=121,168) /			067620 667839
	C .1747921E+0		.11252776+01.	.1314543E+01,	017840
45	C .1304042E+0		.1297837E+81,	.1274084E+01, .1237374E+01,	078770 708770
~,	0 .12207515+0		.12121494+01,	.12041556+01,	007870
	C .1196360E+0		.1181393E+01,	.1174197E+01,	007000
	C .1167197E+0		.1173745E+01,	.11472955+01, .1123236E+01,	000700 120710
58	C .1117675E+6	111122555.01.	.11C7004E+01,	. 11119181+91,	007910
	C .1096 974F+0		.1087564E+01,	.1083085E+01.	958590 95859
	C /	•	110.036.6301	***************************************	017940
), [=161, 201) /			07950
55	G .18678677+6		.1053748E+81,	.1052377E+01, .1046190E+01,	007960 017970
	C .1037-69E+0	1, .50348246+01,	.1032315[+01,	. 10 29 9 1 9 2 0 1 ,	589436
	C .10276332+0		.1016122E+01,	.1021419E+01,	3(7993 000930
61	C .1013072E+0	1, .10116045+01,	.1019306E+01,	.10091797+01,	000010
	C .1088049F+6		.100604E+01,	.1005160E+01, .1002370E+01,	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	C .1001 06 0E+0		.1001026E+01,	.10307895+01,	30 80 46
40	C .1000 4475+0	11002498+01.	.1000110E+01,	.1000027E+01,	008050
69	C 1. / DATA (CLD(I),	I=1.48) /			00 80 73
	C .1460 247E-1	·	.1239734F-01,	.1062509F-01,	000000
	C .8531673E-1		.3843082E-01,	.4503691E-01, .7169210E-01,	000100
79	C .7840189E-0	1, .85126825-01,	.9146589E-01.	.10-23101000.	008110
	C .1053826F+1		.1189458E+**().	.1257433E+06, .1470777E+30,	00126 068130
	C .1325506E+6		.1461929E+00,	.1004411E+00,	080140
	C .1073184E+		.23137798+00,	.2079636E+00,	064740

THIS PACE IS BEST QUALITY PRACTICABLE

	SURROUTINE	AOICOM	74/74	0PT#1		FTI. 4164428	03/14/78
75		c .	21409087+00	. 6819993946	. 22646472740.	. 23557456+00,	DL .
			2424897E+00	-60+38704645.	. 29633016+00,	. 26325595+00	30. ")
		C /					ÇÇ .
		_	A (CFL(I)'I				66740
			2701850E+B0		.2048315E 70,	. 2909003E+00,	008200
••			29792716+88		.31100946.10,	.3107922E+00.	015830
			3256758E+00		.33958355+10.	.3465569E+00,	95:300
		_	2524697E+00		.36735156+00,	.3742898E+00,	000.30
		_	, 3012220E+00		.3950899E+00,	.4020162E+30,	0 62 40
85			4345881E+63		. 4503640E+00,	.4572503E+00,	068860
•		_	4641 24 BE+ 88		.4778483E+00,	. 5546962E+00,	008270
			49157425+80		. 50 91 7795 + 00 .	.5119622:+00,	000000
			91 67 743 6+80	'	-53231878+80.	.53906986+00	01 82 93
		Č /	,				000300
90			A (CLD(I).I	441,120) /			008310
		c.	5450840E+01	5525762E+80.	.5592302E+00,	.4659170E+00.	UE 8320
			5725860F+80	, .57923041+00,	.5858675E+00,	. 99 24 78 4E +0 0,	608236
		G .	. 59906845+88	, .60743465+00,	. 6121853E+00,	-6187346E+00,	006340
			00+30808680	63147 56 7+00.	.03075526+66	.B44\$426E+00,	01.835(
95	•		65 09 24 9E+ 00	657/4045+03,	. 66363836+00,	.6699355E+00,	068860
			67623726+00		.6686510E+06.	.69582888+00,	008370
			70095826+00		.7131100E+00,	·7191403E+00.	014290
			7241224E+00		.7369645E+00,	.74282125+30,	669396
			74 04 33 7E + 80		.7601210E+00,	.76579516+00,	00 64 00
100			7714198E+88	776 99 48E+03,	.7025180E+00,	09+38000785.	200470
		()	, , , , , , , , , , , , , , , , , , , ,				010450
			A(CLO(1), 1=				00 84 30
			7974097E+00		.80.08346+00	.0093360E+00.	008440
			014309E+00		.8247431E+70,	. 82 9758 E +00,	006450
105	•	_	8347114E+00		.8444271E>00,	.8491876E < 00,	Jt 8463
		-	. 03 30 81 8E • 00 . 07 19 76 3E • 00	•	.86306756+70)	.86755705+00.	008470
		_	4887749E+00		.000 6011E+40,	.8648247E+20.	0 (8 4 8 n 0 (8 4 9ú
			904785 E+00		.90+35251510.	.91572745+00.	008500
110			91924508+00	·	.9260431E+00,	.9293229E+00.	018510
			93252286+00		.9386022E+30,	.94164148+30,	268520
			9445203E+90		.950837CE+30.	.9526751E+03	00 85 30
		i i	, , , , , , , , , , , , , , , , , , , ,				000540
		DAT	I. (I) PASS A	161.201) /			L.C. PR. K.O.
115	ı		9552332E+00		.96^110FE+00,	.00243045+00.	JEASA?
			96467165+00		.96691996+70.	.97992825+00,	26 86 7.
			4728599E+00		.9764967E+3C.	.97820325+100	31 6541
		c.	9798761E+00	. 981 3965E+00,	.982 885 0E+00,	.95+3028E+30.	066590
		c.	9856506E+00	.9869297E+00,	.9841489E+00,	.96928535+00,	018630
150		С.	0943548E+00	.9913784E+00,	.9023294E+90,	.99321815+00,	94 8610
				. 994 81375+00,	.9955230E+00,	.9961749E+00.	069930
			9967707E+00		.9977990E+0D.	. 9982340E+20.	01 86 30
			99861796+00	•	.9992374E+20,	.90947552+00,	36 99 95
			9996676E+83	, 9 9 81 4 85 + 99,	.99991856+08,	.99997986+00,	00000
752	•		l. /				669933
		-	time is				00 0670
		£. #0	,				00 44 00

	TUD ROUT IN E	A 9 3HF	16 74/74	0PT=1	FTN 4.6+42A	03/14/74
1					HALL, IOLDPL, LFILE, MFILE)	200030
			COMMON FF (7618),DUMF(26) Ketie.Kpamei		01870C 01880C
					ECANT, PAVE, TAVE, HHCL ID(7), HK(7),	008720
•		C	יס י	a'at'as'mryaei	t e e e e e e e e e e e e e e e e e e e	008730
					, A2(10), A3(10), A4(10)	04 40 30
			COMMON SOPANT			008750 007630
			1510P=0			00 8770
10			CALL SECOND (80 07 68
			PRINT 228, TI	18		804798 808898
			ISAVE-0			600010
		_	SAVEDD(4) - 8.			008020
15		C C Tema	LL-1. IF DV(K	-4) 75 1855 70	IAM DUCKS	008840
		C	.FF-71 TA DAIL	-11 12 6524 11		008959
			IF (ISPALL.ED	.1) 60 TO 10		306836
			IOLDOLFILE			00000
54			KNEW-KFILE KNL-KPANEL			06 44 8 Q
			60 70 20			05 6936
		16	KNEW-LFILE			000910
23			IOLC=KFILE KAL=ICLDPL			96 99 20
~ ,		20	RENIND 11			000000
			PRINTO, "HFILE	,LFILE,KFILE,I	(PANFL M,MFILE,LFILE,KFILE,KFANEL	018950
			RELINE 12			808960 018970
30			REWIND KFILE SAVEDIRO.O			066990
•••		2		10(1),1=1,7),5	SECANT, PAVE, TAVE, (MPOLID(1), I=1, 7),	004990
			(MK(1), 1*i,7)			00000
		\$ \$ 1) (94,154,154) HAN (1941) (14,152,161)		SECANT,PAVE,TAVE,(HMOLIN(I),I=1,7),	019J1G (19J20
35		Ì '	READ (LFLAF)			009030
•		-		LE,1)(XIO(1),	(10(2))	243930
) .EO. 0) 370		359050
		540		1LE.1)(XID(1);) .EQ. Q) 5TO(009360 37:20
••		420		LE,1) (XID(1),		264783
) .EQ. 0) 5701	3 **	00 90 90
		28 8	DO DO K=1,5 SAVEDO(K)=0.			701073 111070
		***	ATTPESTTYPE			351600
45			AP=1.0/(ATYPE			009130
		_	IFCITYPE .NE.	6) CO TO 438		00160
		C 1/1	RATIO ONLY			7 <i>€16</i> 75
		C				609170
50			DO 435 KDD=1,		10)	36 91 86
			IF (UNIT (IOLD)	n,1)(0V1P,NLI -FR. N) STOP		009290
			BUFFER INITOL			009210
				.EQ. () STOP		009220
35				4,1)(V1P,NL[4] .EQ. C) STOP		009230 019240
			BUFFER INCKNE			009250
			IF CUNITCKNEND		15"	064560
			DO 448 KOD=1, FF(KOD)=FF(KO			00 92 7 0 00 92 8 0
61		440		ILE.1) (V1P.HL	(4)	509290
) .EQ. 0) STO		00 93 00
				ILE,1)(FF(1),		019310 007370
65		P 44	CONTINUE) .EQ. 8) 5TO	* 4*	809330
-,		4 55	80 TO 219			009340
		Ç				00 93 50
		Č ALL C	MATIOS FXCEDT	1/1		009360 CC9370
70		_	LL=ITYPE+1			8U 93 80
•		40	DO 48 JP6-1,1	TYPE		0.9390
			APS=JPG			004400
			PO1.0-(APPAPE)		0(44 13

	SURROUTINE ABS	RG 74/74	0PT=1	FTN 4.6+428	03/14/78
	Ç				009420
73				ONSTANTS FOR THE LAGRANGE 4 FOINT	009430
	C INI	ERPOLATION.	******		009440 009450
	•	A1 (JPG) #-P*(P-1.0)+(P-2.	0)/6.0	009460
		#2 (JPG) = (P**			009470
10		43(JPG) =-P4(009480
		44 (JPG) =P+ (P+	**2-1.0)/6.0		009490
	Ċ°	CONTINUE			00 9 5 0 0 8 (95 1 0
		***** REGINN	ING OF LOOP	THAT DOES ADDITION *******	0(9520
85					00 95 30
	\$	READ(IOLD) O			009540
		PUFFER IN (10)			009550
	*	TF(UNIT(IOLD)			00 95 6 0 00 95 70
90	-), DUMF(NLIMO))	069580
		IFTUNIT (IOLD)			009590
	320	NV 5=1			009600
	*	READ(KNEW) V			009610
95		BUFFER INCKN IF (UNIT (KNEW			0 (96 2 C 0 96 3 D
	\$	REAC(KNEW) (FI			009645
	330	BUFFER INIKH			009650
		IF CUNIT (KNEW		'OP" 7"	00 96 60
488	340	FF(1)=FF(1)+	NUMF(1)		009670
100	60	II=2 JJ=1			0.9693 0.9693
	•	00 170 JPG=1	•LL		00970
		IF (JFG.ER.L			009710
		IF (NVS.FO.1)	GO TO BO		009720
105		GC TO 90			ac 9732
	70	FF(II) = FF(II))+0UMF(NVS)		0(9740 0(9750
	80	IF (SAVERRICA)	.FO. 0.0) G	O TO 81	009760
	• • • • • • • • • • • • • • • • • • • •	DUMFY=SAVEDD			009770
110		GO TO 100			009780
	81	DUMFY=FUMF (1)		009790
	90	GO TO 100 Dunfy=Cump(n)	VC_11		0(983i 009810
	100				
115		1JJ) *DU#F(#V<	2)		009630
	110	NYSENVE+1			009840
		IF (NVS.LE.WI		G 140	00 98 10
		SAVEDD(1)=DUI	'		0096 10 009870
120		SAVEDC(7) =DU			06 96 30
		SAVEDD(4) = DU	4F(NVS-2)		00 98 90
	\$	REARCIOLD) OF		PP,NLIMÓ	009936
	\$	IF (EOF(ISLD))			0(9910 0(9926
125		BUFFEP IN(IO)			00 9930
	120	NLIFO=NLIMO+			GC 9940
	\$	REAC(TOLD) (D	MF(J) ,J=4,N	LIHO)	8699 50
	\$	IF (EOF (IOLD)		L BILLE AND PLANTS	009960
130		IF (UNIT (IOLD)),DUMF(NLIMO))	009978 009980
230	130	DUMF (1) =SAVE		30	009990
	•••	DUMF (2) =SAVE			G1000G
		DUMF (3)=SAVET	00(3)		010010
	44.6	NVS=2			J10u26
135	140	IZ=II+1 JJ=JJ+1		•	010030 010040
		IF (II.GT.NL	(M) 60 TO 15	0	010050
		GO TO 170			010060
	180	II=II+1			010670
140	200	4446= (\$4VE DD) ##(11)=##(11)		11 7 0 0 7	010683 01090
	444	II. II+1	· # # 75.17		010100
		IF(II .LF. N	\$ OT 08 (NI.	00	010110

21/080	UT146 ABD	PS 74/74 0)PT=1	PTH 4.4428	13/14/78
	ŧ				010120
145		TE CUTPUT FILE			010130
•	C				01 0 1 4 0 01 0 1 5 0
	8150	WRITE (MFILE) V1			010160
	\$ 190	write (MFILE) (FF BUFFER OUT (MFILE			010170
150	•••	IF (UNIT (MFILE)	.1Q. 0) \$TOP" 8"		010100
	370	BUFFER OUT (4FIL	E.1)(FF(1),FF(NLIH))		01 0 2 9 9 01 0 2 9 9
			.ta. e) 370P" 9"		010210
	3 00	IKHLOTKHLOTE.KHL) 60 TC 169		619550
199		60 70 219			97 95 30
	8	REACCHEM) VIP.			01824U 018250
	168	BUFFER ZWIKKEN,	1) (41P, MLTH) EO. 8) STOP" 10"		010200
		READ(KHEN) (PF()) _le1.MLT()		61 62 70
160	390		1) (FF(1), FF(MLTH))		010256
			EG. 8) STOP" 11"		61 0290 01 03 00
	360	11=1			818318
	170	CONTINUE NYSENYS-1			010380
165		60 70 60			010330
	210	REWIND REILE			016340
	С				81 03 5 0 01 83 6 0
		CALL SECOND (TI	.PEZI		810370
178		PRINT 240. TIME	1.TIM		010300
•••		RETURN			81 83 90
	c				010470
	č				310410
	C				010420
175	550	FORMAT (FO THE	TIME AT THE START OF	NEWARG 15 +, F12.3)	NE 310443
	240		THIS ADDITIONS)	Hauka 12-1-15-51-15-01. Sens	010480
		ENO			916460
SUPRO	UTINE EMI	NJT 74/74 C	DPT=1	#TN 4.6+428	.3/14/78
		-		e 1	010470
1			(31046
			ILE, KPANEL, PO, TEMPO	72079 6 110 110 110 110 110 110 110 110 110 1	018490
_		COHHONNERN		pave, tave, hholistp), hk(7),	010500
5			/, V1, V2,NL AYER - OV1 P,OV2 F,ODV#,NL IMO	•	010510
	c	COPPUR YOURSEL	041-1045-1004-146140	•	016530
				*******	010540
				TOURS OF THE PERSON CHIEF	** 018550
10	C **	••••••	,		016560 010570
	-	DUNC IS & TEMPERA	ATURE USED IN COMPUTE	ng a slack body which	010300
		LL RE USED AS A G			010390
	C				01600
15		EXPF(Y)=EXP(AMA		A TTARKY /TAUE >	010610 010623
			n		818690
			IT, MFILE, KFILE ",		01 06 4 0
		CALL SECONDITIE			010650
50		92=0.0			010660
	•	REMINS WFILE	A491. THE TI. BERAME AA	UE. TAME. (MUNI TRITI : TAL : TA	010678 810680
		1 (WK (I) . I = 1 . 7) . T	DV. V1 . V 2 . NL AY ER	VE, TAVE, (HMOLID(I), I=1, P),	010000
	•	WRITE (PFILE) (X)	10(1), I=1, 7), SECANT, P	AVE, TAVE, (HMOLIQ(I),I=1,7),	818788
25		1 (WK(I), I=1,7),	NY, Y1, Y2, NL 4 YER	•	010710
		BUPPER INCKLIFE	e,1)(YIO(1),NLAYER)		01C720 010730
			.E.1)(XID(1).NLAYER)		010740
		IF (UNIT (MFILE)			011750
30	_	OG 1 II=1,KPANE	EL		010760
	2	BEADINETERS OUT	LP. CV PP.OUVP. NL IHO		016770

	THE ROUTEN C	CH SHI	17 7WM	0 P7 0 1	P78 4.64426	03/14/76
				LE, 1) (0V1P, NL 1)		010700
			BESIN-OATS) .EQ. 0.) STO		810790
15			DAMODAE			01(800 C10810
			DOC=BEGIN			010020
			1-1			610830
		279	#0CIES(I) = #00			018840
40			204108=1113803	. 0.) 60 TO 40		010050
~		49	1=1+1	100 0141		919860 816870
			TFET .67. 101	370P		010000
			DECIMABLEIN+1			91 90 90
48				1 08 (1.1+95YG 11008=(1) 231068		010700
70			DOMON-1.44*0 W			019910 010920
				4.689) 60 TO	100	010930
			DENOM-1.			010940
50		2 40	60 TO 298	# 4 _A @WAWA		010950
•		541	DENCHOL -0 -EXP	PE-4/403(3.0-()	COMON/OFNON)	010 9 60 010970
			00-00DIES (1)		in in in in the interest of th	016980
			BE=EDGE(1)			616990
55			IF (TROUND . RQ	, D.) BE=0.		611000
"			TESTER-OV1P	VARF		011010 011626
			LTEST-1	••••		011830
		\$	READIRFILEDIF	F(J), J=1,NL IM0		011640
				LE , &) (FF (&) , FF (INLIMO))	011650
41		20		.Eq. b.) Stop		311060
		€ U	70 2 J=1, NLIN			211176 011683
			IFIILOOK .EQ.			011040
		C				011130
65		C ENIS	SEICH FOCKING	GOMM		011110 011120
		•	FHISS(J)= (1.0	-FF(J))*88+FF(,	I) THE	C11130
		Ç				C1114P
		C				011150
70		c	40 TO 35			01116(011170
			STICH LOOKING	4 U		511196
		C .				:117 3.
••		*0	E4135(J)=(1.0			011266
75		37	TESTERNTESTER	· CHANGE) GO TI	. •	01121. 011220
			SCHCH=CHANGE-	90n		011230
					ST)-40DIE5(LTEST+1))*COPCH	611546
			IF(TBOUND .4E	. C) MEW EDGE(I	TEST) - (EDRECLTEST) - EDGE(LTEST+1)	011250
63		•	CHANGE=CHANGE	• NV BRF		011260 01127:
				B00+1.0) 50 1	'C 5	011200
		_	60 TO 2			011290
		5	LTESTOLTEST+1			011300
45		2	BOD=ROC+1.0 CONTINUE			011310 011320
		Š		DV1P, 0V2P, 0DVP	NLIHO	011330
		•		in , 1 = L, (U) 22 Ima		311340
98		\$		FF(J),J=1,NL1=([LE,1)(0V1P,NL]		011357 011360
•••				.EO. 0.) STO		011370
			BUFFER CUTCHF	ILE ,1) (EMISS(1)	, EHISS(NLIMC))	011380
				.EQ. 0.) STO		011390
93				%		311430 C11418
		1	CONTINUE			011420
			CALL SECONDET			011430
			TIMENTIME1-TI		DED FOR EMINIT "	011440
100			RETURN	9509 WENE UE:	ARR IAU EUSUSI	911450 011460
			END			011470

•	gwi tuon au a	EHUP	74/74	0PT=1	FTH 4.6	•428	03/14/78
1			SLEPOLTINE EM	UP (NPTS, ITYP	(,LFILE,MFILE)		011480
					r (2410) , Heney (2410)		011490
			CCPHON/HAIM/		,PO,TEMPO [O(7) ,SEGANT,PAYE,TAYE,HMOLI	N 17 1 - MK 191 -	01150D 011510
5		•		74, 41, 48 HLA		U11114441111	011520
			COMMON JOPANL	/ 041P,042F,	envp, nliho		011530
),	E (4)	011540
			COMMON INPANE				011550 6115 6 0
10			EQUIVALENCE (011570
		_	REAL NEWEN, NE	MTR			011540
		; ;					011590 011600
		•			IE LAYER ADDITION FOR THE EN		
15		C		OM SPOUND TO			011650
		7 *** C		••••••		•••••	011630
	,	u	EXPF (Y) =EXP(A	MAX14-174.8.	ns		011640 011650
					/(EXPF(1.43789*X/TAVE)-1.0)		011660
50			EXPHINE EXP (-1				011670
			CALL RECONDET		ile, Kfile —, Mfile,Lfile,	KFTL E	011680 011690
			PRINT 220,71H				011700
			IRNL=1				811710
23		C	PRINT TO THE	12 INALOG	RITTEN ON FILE ", MFILE		011720 011730
		•	KNF =Kby Mef		. •		011740
	;	20	PENINC MFILE				011755
38			REWIND KFILE				011760 J11776
••			BUFFEP IN (LF	ILE,1) (XIO(:	(83) PTF (1)		011780
			IF CUNTTELFIL				011790
			BUFFER INCKFI IF (WITCKFILE				011800 011810
35			BUFFER OUTINF				011620
			TREUNIT CHETLE	.EO. 0) 57) P		C1183C
			DO 30 K=1.4				011840 711857
		40	TPSAVE(K)=0.				011560
40			ATYPE=ITYPE				211071
		C	IF (IT YPE .NE.	01 GO TO 43	1		011891 011891
			RATIO ONLY				J119.
	•	C					011410
45			J06=3				31192(011930
			GO TO 348				011940
		2 24	BUFFFR IN (LFI				011950
50			IF CUNIT CL FILE)pupu		011 96 0 011970
70			IF CONTTREFILE				011447
					I) ,OLDTR (NL INO))		311990
			IF (UNIT (LFILF NO 530 J=1.NL)P==6=		012000 012010
55			HENEM (I)= OLDE	H(1)+(1.0-T9	(I))*88*OLDT#(I)		012026
			HENTR(I)= TR(I	POLUTR(I)			012030
			TESTERATESTER		70 434		012040
			IF (TESTER .LT COMON=CHANGE-		10 930		012050 012060
60					.TEST) =80DI ES(LTEST+1) > COHO	N	012070
			CHANGE CHANGE				312880
			IFICHANGE .GE	. 500-1.01 6	7 10 700		012090 012100
		560	LTEST-LTEST+1				012110
65		2 74	BOD=BOD+1.0 CONTINUE				013120
		7 60	60 TO 188				012230 012140
	•	5 50	IKHL=IKHL+1				218190
70			IFIIKM .LE.	KNF) 20 10 3	60		012160
7 0		C	60 TO \$10				012170 01218#
		C ALL	RATIOS EXCEPT	1/1			012190
		C 43t	LL=ITYP#+1				\$122 9 0
		446	FF-1 : 16441				015570

	SUB ROUTINE	EMUP	7474	OPT=1	FTN 4.69428	03/14/78
75	•		AP=1.0/(ATYPE	+1.01		012220 012230
			DO 48 JPG=1, I'	TYPE		012240
			ape=JP6			012250
			P=1.8-(AP+APG			012260
41		•	PRINT +," Po	-,,		012270 012280
	č	-	THE FOLLOW	ARE THE COL	ISTANTS FOR THE LAGRANGE 4 PCINT	012290
			. INTERPOLATI	ON		012300
	•	t		4 45 - 45 - 5	a	012310
85			A 1 (JP6) =-P*(P: A2 (JPG) = (P**2:			012320 012330
			A3(JP6) P*(P			012340
		_	44 (JPG) = P+ (P+	*2-1.8)/6.		012350
-		60	CONTINUE			012360 012370
-	Ò	-	- BEGINNING D	F LOOP THAT	ODES ADDITION ****	612380
	Ċ					012396
			JUG=1			012400
95	•	•	READ(LFILE) O' BUFFER IN(LFI			012410 012420
••			IF CONTT CLFILE			012430
						012440
	(EH IS THE REGI	ON FOR THE	ENISSION SUMMATION	012450
100		Ė	READ(LFILE) (O	LNEWELLAND	I .ML THO	01246Û 01247D
	`	_			((1),OLDEM(NLINO))	012480
	_	_	IF CONTICL FILE) .EQ. 8) !	STOP	012495
	•		TO TE THE DECT	NU ERR THE	TRANSHISSION SUPMATICA	012500 012510
145	č		14 15 1HE 4501	DM FUR THE	I WARRANT STAN SOLUMITED	012520
		-			R(1), QLDTR(NLIMO))	0125 30
			IF (UNIT (LFILE)	• • EQ. 6) :	POT	012540
			N VS=1 GC TO 368			012550 012560
110	Į	340		M(1)+(1,0-	TR(1)) #BR#OLDTR(1)	012570
			NEWTRESDATEES			012580
			TESTER=TESTER	+DAP		612596 912666
		60	JJ=1			012610
115	(C				012626
		C		• •		01263J 012540
			DO 198 JPG=1,	·	^	012650
			IFINTS .EQ. 1			012650
120			GO TO 90			012670
	,	70	NEWEM(II) =OLD NEWTR(II) =TR(.p-tr(II)}#8##OLDTR(NV\$)	012680 012690
			TESTER-TESTER		4437	012700
			60 TO 110			012710
129	}	80	IF (EMSAVE (4)	4.7.4	GO TO 81	012720 012730
			EHSTORE EHSAVE			C1274G
			60 TO 188	14.		012750
		61	EHSTOR=CLDEN (7.7		012760
130	ļ.		TRSTON=OLDING GD TO 188	i)		012770 012780
		90	ENSTOR=OLDEN	NV\$-1)		012790
		•	TRSTOR- OLDTR			012800
		<u> </u>			14 0 0 0 0	012810 012820
139		C IHT	ERPOLATE FOR T	ME OFD ENT	22Inu	012830
		100	OLDENI=A1 (JJ)	PEHSTOR+ AZ	(JJ) *OLDEH(HYS) +A3 (JJ) *OLDEH(HY5+1) +	012640
			1 A4 (.'J) *OL DEM (012850 012860
		C	ERPOLATE FOR T	WE OLD TEE	MEN TEETOM	012870
141		C INT		_		012880
		-	OLUTRI-A1 (JJ)	TRSTOR+AS	(JJ) POLDTR (N45) +AB (JJ) POLDTR (N45+1)	012690
			1+A+(JJ) *OLDT#			012900 012910
44			NEWEM(II)=OLD		P([]))*96*OLDTRI	012920
149	•		TESTEROTESTER			012930
		110	NYS=NYS+1			012940
			IF(NYS .LE. A) YO 140	012450 012960
			EHSPYE(1)=OLT	154 1442-71		7.0.

THIS PAGE IS BEST QUALITY PRACTICABLE

SUB ROUT	INE EMUP	74/74	07141	FT	H 4.6+428	03/14/76
150		ENSTABLISHED.				012970
		EMSAVE(3)=OF				012980
		TRSAVE(4)#OL				012990 0135J0
		TREAVE (2) -OL				013010
155		TREAME (3) =OL				013020
	\$	TRSAVE(A)=OL	DTR (442-2) 041P, 042P,004P, N	T WA		013030
	į	IFIFOFILFILE		F140		013049 013050
	•	BUFFER INCLF	ILE, 11 COVIP, NL IN	6)		013060
140	128		E)) 150,100,180			013070
	120	NLIMONLINUS READ(LFILE) (3 OLDEM(J), J=4,NLI	HO		0130 0 0 813090
	•	RUFFER INCLE	ILE, 1) (OLDER(4),			013100
448	***		(1) 130,160,138	M.M.		013110
165	\$136 130		OLOTR(J),J=4,NLI ILE,1)(OLOTR(4),			013126 013130
			E) .En. 0) STOP			013140
		OF CEH (1)=EH2				013150
170		OLCEM(2)=EMS				013165 C13170
		OLETR(1)=TRS				013160
		OLDTP(2)=TRS				017190
		OLDIR(3)=TRS	AVE (3)			01320C J1321C
175	140	I I= I I+1				012550
		リリ=))+ 1				013230
		IF (II . GT. N)	LTH) GO TO 150			013240 J13250
	C	40 (0 1)				013260
180		EOF HAS OCCUR	ed on the file f	OR THE PREVIOUS LAYE	R	013270
	C 180	IIaII+1				0132 <i>8</i> 0 013290
	700		3) +E45A VE (2)) *0.	5		013270
		TR1=(TPSAVE(3) + T##4 VE (2)) * D .	5		013310
185	500		1+ (1 • 0 ~ 7# (12)) *B	9 * T R1		013320
		NEWTR(II)=TR II=IY+1	(11) + (4)			013330 013340
		IFILL ILE. N	FIH) 60 TO 207			27.25.20
400	\$150		V1P, V2F, DV, NLIM	• u ·		013360
190	•		17, 12=C, (J) H3H3H1 17, (C) STH3H1		•	013370 185513
	Ċ		•	•		013390
		TF OUTPUT FIL	E			013400
195	C 158	BUFFFR OUT IN	FILE,1) (V1P,NLIN	1		113416 013420
			E) .EQ. D) STOP			013430
			ETEPT) (HEHEH(T)	HENEH (HFIH))		013440
			E) .EO. D) STOP File.1)(WewTr(1)	NEUTRINLIMII		013450 013460
200			E) .FO. D) STOP			013470
			E. C) 60 TO 333			013480
		OO SEO JELON VP=V1P+FLOAT				01349i 013500
	320		, VP , NEW EN (J) , NEW	TR(J)		013510
205		JENDONL IM-NP				013520
		A6-476+4F 07.				013530 013540
	330		, VP, NEWFH(J) , YEW	マストント		013550
	900	FORMAY (110,F				013560
218	298	CONTINUE	B B) 165			Q13570
	549	GC TO (545,5)	> 0 : } \ (0			01358C 013590
		IFEIKAL .LE.	XNL) GC TO 160			013600
213	160	70e=5 60 10 578				013610
647	260		ILE,1) (V1P.NLIH)			013620 013630
		IF CONTT (KFIL	El .Eg. b) STOP			013640
			<u> </u>	AFIN))		013650
280	c	TE COMPLEX LE	El .EQ. D) STOP			01366) 013670
·	C COM	PUTE THE BLAC	K BODY EVERY 1 H	AVE . BEGINNING AT V	1P	017680
	0					013690

30	eroutine enur	7474	0PT =1		FTH 4.64428	63/16/76
225		Begin=V1P Roc=Begin [=1				0137 00 013710
	270	5061ES(1)=880 1=1+1 fr(1 .GT. 161				013720 013730 013748 013750
\$20		BEGIMBEGIN+1 IF (BEGIM .LE. IF (I .EQ. 2)	V2P+1.8) G(013750 013770 013760
239		COMONO1.44-V1 1F(COMON .LF. DFNOM=1. 6C TO 298		to 200		\$137 9 0 913800 913810 913820
	200 200 200	DENOM=1.0-EXP		-(COHON/DEHOM)) 17=1,101)		013830 017640 013850 013860
240		TESTER-VIP CHANGE-VIP+DV LTEST=1 DO 260 J=1,NL	_			013470 013460 013690 013900
245		TRUSTRUS TRUSS: IF (TRU LLE. IF (TRU LLT.				019910 03920 03930 049210
250	258 260	TR(J)=EXPHIN GO TO 260 TR(J)=EXP(-TR CONTINUE				013950 013960 013970 313980
255	350 170	GO TO (340,39 II=1 IF(TESTER .LT COMON=CHANGE-	CHANGE) GO)	PT .44 \\ \	013990 01460 014620 014020 614030
•••	*0.0	CHANGE -GE IF (CHANGE -GE GO TO 190	+DV98F • BOD+1.0)		51 4173 *COHO	014040 014050 014160
767	300 190	LTEST#LTEST+1 #00#800+1.0 CONTINUE NYS#NYS-1				014.73 384.89 014090 014130
265	510 C	GO TO 61 REWIND KFILE				014120 014120 014131 014140
270	c	CALL SECONDITION TIMETIMES THE SECONDITION SECONDITION RETURN	E			114150 114160 114170 114181
275	550 C C			START OF EMUPIS		0141 9 0 01420 01421 01421
	240 G			E END OF EMUP IS TO THIS ADDITIONT)	,F1E.3/F1E.3,	014230 014240 314250 014260

THIS PAGE IS BEST QUALTRY PRACTICABLE

540 46 0 7[4	E EM SO M	N 74/74	0PT=1	PTN 4=6+020	03/14/70
1				rpe,lfile,mfile)	014270
		Compon of D		rq(2418), Newen(8418) .pb.tenpu	014283 014290
_		COMMON'X EMIZZ	/ MMOL, X	id(>),5egint,pave,tave,1molid(>),	M(17), 014303
*	C	: Coppor Jopane	DV, 41, 42, NLA		014310 614320
		CORNON /NPANL			014330
)	014346
16		EGRIANTEMOS (l},800[[\$(181) 1}}	014390 9143 6 0
		REAL MENEN, ME			014370
	Ĉ				914388 914388
	6	THIS SUBROUT	THE DOES THE	LAYER ADDITION FOR THE ENISSION	****** 014400
19		-LOCKING FROM		pund Dund	****** 014410
	Ľ				•• 014420 816638
		EXPFITMEXP. A			014440
20		EXBHIM-EXB(-7, BADUA(X) B(7.7,) /{{\text{txPF(1.43709*X/TAVE)-1.8}}	014453 014460
•		CALL SECONDIT	(JP)		014478
		PRINT 220,TIM IKNL=1	Z .		0144 <i>0</i> 0 014490
			SI TUTTUO S	MISTTEN ON FILE ".MFILE	C14500
55	C				014510
		KUTOKAVET	JOHN, WEILE,	LFILE, KFILE ", "FILE, LFILE, KFILE	E 014520 014530
	20	RENIND MFILE			01454C
70		REHINC LFILE REHINC KFILE			014550 014560
14		BUFFER INCLES	LE.1) (XID(1	((S) DIK, (014570
		IF CUNITCLFIL	E) .En. C)	STOP	014560
		TUFFER INCKFILE			014990 314633
35		MUFFED CUTIME	ILE. 1) (XIO11	HLAYER	014610
		IFIUNITINFILE: DO 30 K=1.4) .Eq. 0) ST	OP	014620 014630
		TRRAVEIR -P.			314446
		EAGUAE (K)=0.			014650
40		ATYPE=ITYPE .AE.	41 GO TO 43	0	014650 114675
	C				780453
	C 1/1	RATIO ONLY			014690 01470
45	-	JUG=3			014710
		900-5 100-5			01472C 014730
		BUFFER INCLFI	LE .1) (0V1P . N	LZMC)	014740
		IF CONTTILETLE) .EO. 0) ST	0 P	014750
30		IF CUNIT (LFILE		1) ,OL DEM (NL IMO)) OP	81476J 014770
				1),OLNTRENLIMO))	U14780
		IFIUNITILFILE ON 538 I=1,NL		nP	014790 C14860
55				L.C-TR (T)) * 68	214814
		THTR(I)=YR(I			757410
		TESTEN TESTER .LT.		TO 530	014830 01484:
		- SOMANTEMORE	100		014670
60		Change Change		ltest 1 - Bod Ies (Ltest + 1) 1 + Comcn	014640 014670
		TRICHANGE .SE.		0 TO 560	014870
		FO TO \$30 LTEST=LTEST+1			76447
65		800-800+1-6			014 9 00 C14910
		CHTIMIE			014920
	35e	EC TO 198 IKNL=IKNL+1			014930 014940
		IPLIKAL .LE.	KNF) 60 10 3	5	014950
70	С	GO TO 210			014900
		MATIOS EXCEPT	1/1		014976 014980
	C				014990
75	+30	J06=1			01 50 00 01 50 10
* =		•			44.444

	SUPPOUTIN E	EM 801	m 7476	OPT =1	F1	TH 4.6+428	03/14/78
			AP-1.8/(ATYPE				815020
			DO 40 JPS=1.I	TTPE			617030 01 50 40
			P=1.9-(AP+AP6))			015450
88			PRINT Pa				015640
					P EQUALS THE RECIPACE		
		C					3150 90
					E CONSTANTS FOR THE LA	Brange & Point I	015100
65		C	117470471NI 2104-= (34 L) 14			***************************************	015120
			4 *** (JPG) = (P** 2				015138
			A3(JP6)=-P+(P				015140
60		40	CONTINUE	-6-7-411-004			015150 015166
		C					U15170
		C ++++	cocces ble	INNIME CA FO	OP THAT DOES ADDITION	***********	** 019180 019190
		•	JUE=1				015200
95		\$	READILFILE) O				012576
			BUFFF# IN(LFI IF(UNIT(LFILE				C15230
		C	** (OH * (16 * 46 6				015240
			nsmission at t	HE PRESENT L	AYER		31 52 50
160		C S	READ(LFILE) (O	0644.23	ML THO		015260 01527C
		·			1), OLDEN (NL INO))		015280
			IF COMET (LFILE				015540
105			IF CONIT CLFILE		1),OLDTR (MLIMO))		015300 615 310
•••		390	NVS=1	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•		015320
		3. .	EC 10 768				014335
		306	MENER(1)=TR() NENTR(:)=TR(1		7.0-14(71)-80		01 \$340 01 \$350
110			TESTER-TESTER				015360
		46	II=\$				615370
		c 🕶	JJ=1				015380 (15390
		Č					31 5477
115			DO 190 JP6=1.				315413 31542.
			IFIJPG .EO. L' IFINYS .EO. 1				025430
			60 10 40				225440
		7¢			5)+(1.0-TR(II))***		015450 015460
150	!		WENTR(II) = TR(TESTER TESTER		2)		015470
			60 TO 118				015486
		90	TF(FHSAVE(4)		70 61		013490 015500
125	•		344243 — #07243 34424 1 —#07247				619919
16,	•		60 70 180				315526 015530
		84	ENSTOR OLDER				015540
			TRSTOR-OLDTR(319553
130)	₩.	ENSTOR- CLOEM	NVS-1)			01 556 6 01 55 70
		c	TRSTOR-OLDTR	MAR- 1)			015560
		C INT	ERPOLATION OF	THE PRESENT	TRANSMISSION		215596
		C			1) +0fdeh(m2) + 12 (11) +0	I. DE M (AV 501) +	01 3600 01 36 10
131	5	176	A ALAS IN MORREY	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			019680
			OLDTRIMAL (JJ)	-TRSTOR+A2(,	0* (LL)	L DTR (NVS+1) +	01 56 30
			IANIJJ) POLOTRI	(HVS+2)	+TR(II) +OLOEHI		013650
140	1		WENER(II)=\1.		FT FREE TOWNSTILL		015660
	-		TESTER-TESTER				013670 01 368 0
		110	HVS=HVS+1 IF(HVS .L.E. H	M TMO-21 &0 T	0 140	•	019490
			EHSTAG(T)=OF(015700
14	5		EHRAVE(5)=OF)(H (HVS)			61 5 710
			EH27A6(7) = OF (018730
			TREAVE(1)=OL				018746
_	_		TREADERS SOL	TR(NYS)			013788 013767
19	•		TREAVE(3)=OL) 1 ≤ (42 4 7 }			

	INDOM 3 SHE TUDA OUS	74/74	091-1	P 1	IN 4. 0-428	03/14/78
		A46 (4) -OF D.		AM AM \$440		015770
		EOFILED	41 P. OV PP.OD/) 1 MB. 12 G	A- *MF T-40		0157 6 C 0157 98
	BUF	PER INCLFIC	LE, 1) (0V1P, I	wimo)		115000
159		MOONLINO+3) 120,180,			'019016 019020
	S REA	C(LFILE) (O	LDEH (J) , Jr 4,			017830
			LE,1)(OLDEM: }	(4) ,OLDEH (NL 140))		015040 015850
168	42 BUF	FER INILFII	LE, 11 (OLDTR	(6),OLDTR(NLIMO))		919000
		unit quil e: ares = (1) h i)) 43,166,1/ WF44b	••		9150.u 915000
	OLD	EN (2) OEMS A	AE (\$)		:	013030
169		EH (3) = EMS A! TR (1) = TRSA!				J1 9900 015 91 6
	OLD	TR (2)= TRSA	AE (\$)			313920
	# #2 : 0f:0.	TR(3)=TR3A\ =3	AE (2)			01 993 6 21 99 40
	1,40 11=	11+1				015950
170		JJ+1 17 .67. ML	IM) 60 TO 15	10		615960 815976
		70 178				319960
	C				•	0159 9 0 0160 0 0
175	2	MAS OCCURE	D ON 1445 1-11	LE FOR THE PREVIOUS LAY	•	316010
•••	1 80 TI=					01 6L 20 01 60 30
) + FM3AVE (2)) + TR3AVE (2)			(16040
4.00	POD NEW	EH(II) = (1.4	0-TR([]))+8(B+TR(II)=E41		016050
100	_	TR(]])=TR1' II+1				016060 016070
	IF C		14) GO TO 20	9		51608C 016090
	C G WRITE O	UTPUT FILE				016100
185	C					016110
			V1P,V2P,DV,! :=L,(L)H3H3H			11612C 9161 3 0
	S WRI	TE (MFILE) (I	HENTRUJ) ,J=1	L, MLIH)		016147
198]LE,1)(V1P,1) .EO. 0) 5'			216150 016160
	BUF	FER OUT (MF	ILF. 13 MENE	i(†)*HERĒH(HFIH))		216170
) .EQ. 0) 5' ILE.1)(WEWT	R(1),NEHTR(NLIM))		316187 016190
) .FO. 0) 31	FOP		016230 016210
199	-	VE=5 NLIM .EQ. !	5) IFT##=1			016210
	IF	I MPTS .LE	. 0) 60 TO	333		016230
		329 J=1,MP' V1P+FLOAT(:				616240 162 5 0
560	370 P9I	HT 900, J.	(L) MBHBH, TV	, NENTR (J)		0.6260
		LEND LT.	0)	•		ú1627î C1628Û
	00	320 7=7EHD	, NLIM			016390 016300
207	yes 330 PRI	V1P+FLOAT(Ab ' W EM EM (7)	NEHTR (J)		016310
	900 FOR	MAT (110 , F1	2.6,3715.8)	•		016320 016330
		TINUE TO (545,55	2000			016346
	545 IKR	L-IKNL+1				016350
\$11		TO 210	KNL) GO TO	7.00		016360 016370
	160 JUG			. ***		016380 016390
			LE.1)(V1=,N			016400
515	. OUF	FER INCKFI	LE,1) (TR(1)	,TR(NLIM))		016410 016420
	C) .EQ. 0) S			016430
		THE BLACK	BODY EVERY	1 MANE . REGINNING AT	V1P	016440 016450
221	C BEG	IN-V1P				016460
	୩ ୯୩	=PES IN				016470 016480
	1=1 009 075) 	DY (BEGIN)			016490
	1=1					116500

SUB BOUT TH	E ENDO	HH 74/74	097=2		FTN 4.6+428	83/14/78
223		FT .ST. 1811 BEGINSRESINS1	•			01 65 10 01 65 20
		IF (PECIN .LE.				016530
		IF(I .FO. 2)				01 65 40 01 6 550
	CCC		DIES(I),I=1,1	9)		916560
520		GONCHAL.44*V1		240		016570
			4.6651 40 10			016580
		DENO4=1.8 60 TO 298				016390
	240	DENON-1 . B - EXP	F(=COMON)			016600
235		DV88F=V1P*1.0		COMON/DENON))		216619
639	2 74	80- 80DT ES (1)	_ ~~~	•••		016620
		TESTER VIP				016630
		CHANGE-VIP-24	eef .			016640
		LTESTAL				C18650
248		DC 266 J-1,ML	TH .			016660
		TRJOTR(J)				016670
		TREUT =1.				C16680
		IF (TPJ .LE.				016690
		IF (TPJ out.	174.0) 60 T	n 258		016730
245		TR(J)=EXPHIN				31 67 13 616720
		60 TO 260				016736
	258	TRIJO .E MPI-TR	J)			016743
	260	CONTINUE				016730
	370	FCRHAT (1X1P10				01676C
250		GO TO 1340,39	a*223 *70e			C16775
		11=1	CHANCEL CO	TO 180		02.6730
	170	IF (TESTER .LT		10. 470		016790
		COMON=CYANGE-	**************************************	TEST)-BODIES(L)	TEST+x))*COHON	016000
255		CHANGE CHANGE	ANURRE			115c17
622		IF CHANGE .GE		TO 300		C1682L
		60 TO 190		, , , , , , , , , , , , , , , , , , , ,		016630
	3 8 0	LTESTAL TEST+1	L			016650
		8000800+1.0				016650
280	190	CONTINUE				0168GU
•••		NUS=NV5-1				016673
		GO TO 60				01686i
	210	REWINE KFILE				(1689)
	c					016900
265		CALL SECONDET	THES)			01691C 016920
		TINETIMES-TI				016930
		PRINT PAD, TIE	167 * L IM			016940
		RETURN				016950
	C					016980
278	Ç					016970
	t			START OF ENDON	N 15 4.612.31	016980
	220	FORMATION THE	SHI IN SPLE :	STILL OF ENDOW	IS +, F12.3/F12.3,	016990
	500	POWER (TO THE	E ILTE AL IME.	ur Enus#4	aw . Free and Landa A	017.33
		14 2502 MEME	KENNYED LOK	THIS ADDITION®)		017010
275	S	ENC				017020

LISTING OF HIRACD SUBROUTINES

MARCHOLMO PARE

SUP ROUTINE	HIRACD	74/74	0PT=1			PTH 4.6442	• !	03/14
1	3 U	BROUTINE H	IRACO					08
	C		_					20
	*******		*****		********	********	*******	a 60 60
•	•						•	• 80:
	• CAI	LCULATES M	ONOCHRO	MATIC ABSORP	TION COEFFIC	TEAT FOR SING	LE LAYER	• 00
	•						•	• 00 00
•	•	USES	HIRACC	ALCORITHM F	OR THE DOPPL	ER PROFILE	•	• 00
	*	********	****	*********	•••••	*********		• 60
	C							0.0
5	C	MON SNU(2	50). \$ (2	50), ALFAO (25	1).EPP(258).	MOL (250) .		80
	C	EFDPT	H (258),	RECAL*(250)		,,		0.0
		HHON FF (36) HHON HAIN		XPANEL.PO.TE	HP0			90 33
_	CO	HON/NEW/	NHO	L,XID(7),SEC		/E,+MOLID(7),W	K(7),	80
0	C	AHON /XSUB		v2,nlayer Ilo.ihi.vbot	.V TOP.VFT.I	EOF ,IP ANEL ,IST	OP,IDATA	38 38
	CO					ys, nys, npmax,n		
	1AX CC	PHON /SUB1	/ MAXF.	MA XS, MAXYS.N	LIMF.NLIPS.	WLIPVS, NLO, NHI	, DVS, OVVS	3 C
5				, V2P, DVP, NLI		rs	•	00
				IMRDF,TIMGNY ,ALFD1(7),U(90
	C QI	HENSICH AD	(251)					36
)	-	TA NNF / 6	/, DXF	/ 0.P2/, NF	/201/, NFHA)	(/251/		30
				/ 0.08/, NS / 0.32/, NVS				9 C
	C			•	-			0.0
3	C DA	IA IENTER/	8/, LI4	IK/250/, M SH	IFT/32/, NL:	IMF/2401/, MFT	5/ 0/	90
	DA	TA SUBID	/10H H	IPACO /				00
	C	(IENTEP.N	F.8) GD	TO 10				0.0
	18	NTER=1						0.0
)		ims=(nlimf. IMVS=(nlim						90 00
	C NO	TE (FXVS/D	XE) IZ	16 AND (DXVS	/DXS) IS 4			0.5
		D LN DB (D XV5 X FBNL IMF+N		LOAT (NHVS)				00
5	, MA	XC=(MAXF/4	1+1					00
		XVS=(MAXS/ Li smaped(90
	CA	LL HOLEC(1		, NMOL, TEMPO,	TAVE, PO, FAV	E, SCOR, ALFCOR,	ALFD1)	0.0
0	-	INT 900 INT 970, S	UB ID					90
-	TI	PPDF= TIMEN	V=TIHPH					0.0
		INT 986, Hinc Kfi <u>'</u> e		1),1=1,7)				00
_		CFRO						00
7	PR PP	INT 910, K INT 915, S	ECANT					0 C
	PR	INT 925, P	AVE, TAV					00
		INT 930, (INT 940, D		H) , WK (H) , H=1	PUMOF 1			03
0	DV	O Y						9.0
		A 2= (DXA2\D 2=(DX 2\DXL						0.0
		UND=FLOAT(00
5	14.0	undr- bound Int 942, 5	SUNDF					0.0
	AL	Fra X= 25 UND	/FLOAT	IMF)				00
		o=nbound+1 I=hlihf+hs						0.0
•		58 Int. M	XF					90
0	C	(1)=0.						•
					CANT, PAVE, T	AVE + (HMOL ID (M	, M= 1,7),	90 00
		THK(I),I=1 FFER CUT(K		. (XZD(1),NL4	YER)			ii

		RACD 74/74 OFT=1	FTN 4.4+428	03/14/78
75		IF (UNIT(KFILE).ED. 0) STOP	ndda	000040
	C	WAT		80 0830
		YFT=41-2, 480UND 4801=41-8,0UND		00 Q860 DC D870
		ALDA-AS-BOMU		388030
80	C	•		000000
		XKT D=D. F951 TTEMP8		00 00 00
		XKT =0.6951*TAVE XKTFAC=(1./XKT) ~ (1./XKTO)		GL G915 00 G 92 0
			HPB, TAVE, PO, PAVE, SGOR, ALFGOR, ALFD 1)	000930
85		DO 66 K=1,NMOL		000940
	80	U(4)=WK(M) *SCOR(M) *SECANT ICNT=8		00 0 93 D
		SUMAL F# 0.		000970
	_	NCHN6=0		08 90 30
90	C 90	CONTINUE		000 49 0
	č	CONTINUE		C01010
	100	CONTINUE		01 1050
95	C	CALL SECOND (TIMED)		001930 001040
77		IF (IECP.NE.D) GO TO 150		001050
		CALL ROFILE(GNU, S, ALFAO, EP)	·, MOL)	C0 10 60
		GALL SFCOND (TIME) TIMPOFOTIMEOFOTIMEO		001670
100	t	114404-11-40441146-11468		0(103) 001090
		IFFIERF.NE.B) GO TO 140		061100
	C	MARTER 1 THE SATE PAR TEMPE	ATTION MARCHINE AND ADDITION OF HER THE	601110
	Ç	MODILA TIME DRIP LOS IGUACA	ATURE, PRESSURE, AND COLUPA CENSITY	061120 061130
105	_	DO 170 T=TLO, INT		001140
		###OL(I) =5(I) =U(M)	•	001150
		IF (EFERTH(I).LE.G.) GO TO	130	0C1160 0C117C
		ICHT=ICHT+1		001180
118		ALFO=GNU(T)*ALFD1(M)		001190
		PRINT \$45, GNU(I),5(I),ALF/	C(I) alfD.DV.H	001200 01210
		ALFD=DV		051220
	4.5.6	NCHRESNOMNESS	nA	001230
115	116	IF (ALFO.LF.ALFMAX) GC TO 1 PRINT 950, GNU(I),S(I),ALF/		UČ1240 C01250
		AL FREAL PHAX	a car a car a familia com a	001260
	434	NCHNG=NCHNG+1		001270
120	150	CONTINUE SUMALF#SUMALF+ALFO		CC 1250 001290
		REGALFET) = 1./ALFD		001300
		EFOPTH(I) = EFOPTH(I) = EXP(-EF	P(I)*XKTFAC)*RECALF(I)*	001316
	130	TONTINUE (1EXP(-GNU(I)/)	KTTT/(1EXP(-GNU(I)/XKTO))	001320 001330
125		IF INCHING. GT . 1901 GC TO 169		001340
	140	CONTINUE		001350
	¢	CALL CONVENDIGHU, EFDPTH, REC	ALF. MOL. FE. YOL	00136U 001370
	¢		्च हर्ष्ण्या र ह ्षण्या	011380
130	c	IFEIPANEL.ED.O) GO TO 100		001390
	150	CALL PANELD (FF.KFILE)		001430 UC1410
	r	*		061420
135		CALL SECOND (TIME) KPANEL=KPANEL+1		001430 001440
		I= (ISTOP. NE.1) GO TO 140		001450
		END FILE KFILE		001460
	160	CONTINUE PRINT 955, TIME, TIMENT HER	V.TIMBUI	001470
140		IF (ICNT.LE. 0) GO TC 170	yy'ant 96	CC 1480 CD1490
		A VALF=SUMALF/FLOAT (ICNT)	ı	001500
	c	PRINT 960, AVALF, ICHT, NCHNG		001510
	170	RETURN		001520 001530
145	ç			001540
	C C			071550 061560
	900	FORMAT (1HD)		DG 157D
	904	FORMATEIX, 7410)	n a.e.	061580
150	910	FORMATION OUTPUT FILE NO. =	7 [5]	DL 1590

SUP ROUT INE	HIRAC	0 74/74	0P7=1	FTN 4.6+428	03/14/78
	915	FORMATION S	ECANT	F15.5)	001600
	920	PRPHAT (10			001610
	925			= + F12.5/ +D TEMP(K) = + F11.2)	051620
	93.0			DENSITY (MOLECULES / CM7+2)	001630
155				* 1PE10.3))	001640
•••	940			= *F12.8/*0 V1(CH-1) = *F12.4/*0 V2(CH-1) = *	001650
	942		BOUNDE	(CK-1) = .F8.4)	001670
	94.5				001680
160	950			+++++++++++++++++F18.4,E14.3,3F10.6,15)	961690
	955			HE-, 11x, -READ-, 4x, -CONVOLUTION-, 10x, -PANEL-/	9(1730
		1 6515.3)			. 801710
	964		AVERAGE	NIOTH = PF10.5,	061720
				10, * NO. CHANGES = * 110)	0017 3C
167	970	FORMAT(1H8, END			061740 861750
SUS ROUTI	HE COM	/FHD 74/7	4 OPTE	1 FTN 4.6+428	53/14/76
					0(4740

SUS ROUT!	HE CONV	FHD	74/74	OPT=1	FT N 4. 6+ 428 43/	14/78
1		SUBROU	TINE C	ON VENTICANU	, efopth, recalf, mol, ff, xD)	001760
•		COMMON	HEN/	NHOL, X	D(7), SECANT, PÁVE, ŤAVÉ, MOLTO (7), HK (7),	061776
		C		77,71,72,	NLAYER	001780
		COMMON	PUZKI	/LIMIN, ILO	, INI, VOOT, VTO: , VFT, IE OF, IPANEL, IST OF, ICATA	001790
5		COLHOR	/WXX/	NWF, DXF 4 N	F, HHS, DXS, NS, NHVS, DXVS, NVS, HFMAX, HS MAX, NVSH	0(1830
		1AX			BUR DURE BUR BUR	06181C 00182C
					s, maxys, hlimp, nlipj, hlipvs, hlc, npi, dvs, cvvs	001020
					nf, Timchy, Timphi	311841
					TH(1), REGALF(1), FF(1)	001850
10			ION HO			0(1850
			TCN XO			011876
				(TIMED)		288120
			CAAZ	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		001490
a.#			VU S V DA			001930
15				HID GO TO	≪ ∩	001913
			I=ILO.		~	001920
			EF OPT			001936
				.n.) GO TO	49	0.1945
20				F(I)+RATVX		001950
2.0				-VFT) /9 VVS		001960
			W 5/75L			001970
		JHAXW	ZINT+8	FVS)+2.		801988
		IF (J	MAX.LE.	MAXVS) GO	TO 20	001990
25		ILAST				36 50 05
		50 10				002010
	20			IFVS)+2.		002030
			= (ZINT*			062040
		5A2=(FL CAT (J	MIM-5)-ZIN		012030
30					INT+CONF) *ZSLOPE	002060
				M, JHAX		012070
			[HF+JJ	•		00 20 80
			+2 SL OPE RS (ZF) +			002090
)+DE#7HI*;	n (175)	002105
35	30	CCHTI		7406-1112		002110
	40	CONTI	_			002120
	70	TIART	-T MT			00213C
	C	TOAT	40 G FOR	NORE DATA	REQUIRED . IDATAMI IF NO MORE DATA REQUIRED	C0 21 4u
48	•		L= TD AT			0.557.20
40		60 10		•		002160
	50	CONTI	HÜE			082170
		IPANE	1=1			002160
	60	ILO=1	LAST+1			002190
45	-	CALL	SPCOMD	(TIME)		005500
				4V+TIME-TI'	YEO	062210
		RT TUR	H			002230 002230
	Ç.					865590
		FNC				JUER 4:

	SUB ROUTINE	PANEL	.0 74/74	007-1	FTN 4.6+428	03/14/78
1			RUBROUTINE PA	M elo (FF,KF)	u.e.	062230
			COMMON/NEW/	NHOL,XIT	(7), SECANT, PAVE, TAVE, MOLID (7), WK (7),	062200
		C		DA'AT' AS'MT		002270
_					II, VOOT, VT OP, VFT, IE OF, IPANEL, ISTOP, ICATA	062580
5					1Axys, NLIMP, NLIMS, NLIPYS, NLO, NHI, DYS, DYYS	0.0000
					DVP, NLIH, MSHIFT, NPTS	002300
			DIMENSION FF		TINCHY, TIMPHL	062310
			CALL SECOND			OC 533C
10			ISTOP+8			002340
			NHH I= (VZ- VFT)	/DV+1.5		002350
			IF (NHI.GE.N			002360
			IF (ISTOP.EQ.	.1) WHICHMI		002370
			JHX FR-NLO+MP	75		002380
15			JUPREHHI-NOT!	-		0 C 2 3 9 0
			TIMFO=(FFO-T)			002400
			FIHHI= (MHI\+)			002410
			IF (NPTS.ED.)			062420
20			DO 48 J=NLO,J VF3 VFT+FLOAT			662436
20		. 0	P' INT 900, J.			062440 86245)
			00 50 JeJJPR			802460
			VP= VFT+FL OAT			002470
	9	50	PRINT 900, J.			052480
Z 5	(50	CONTINUE	•		JL 2490
			NLIM=NHI-NLO			002500
			V1P=VFT+FLOAT			CC 2510
			VSP=VFT+FLOAT			062523
		C	V1º IS FIRST			002530
30			VPP IS LAST ! WRITE (KFILE)			002540
		i	WRITE (KFILE)			0 C 25 5 C 0 C 25 6 C
	•	•	BUFFER OUT (002570
			IF CUNITCEPIL		•	002580
35			SUFFER OUT (N	(FILE,1) (FF	(NLO), FF(NMI))	002590
			IF CUNITERFIL	E) .EO. 0)	STOP	002600
			VFT-+FIOAT			362610
			IF (IST OP.En.	.1) 60 TO 140		015950
			JF=1			002630
40			LO SE T=NFINE	F MA XF		065640
		10	ドド(JF)=ドド(J)			C02650
	•		00 90 JeJF.41			005660
	:		FF(J)=[.	AF		002670 002680
45		••	NLC-MSHIFT+1			069236
	1	146	CALL SECOND	(TIME)		002700
			TIMPHL= TIMPHL			002710
			RETURN			00 2720
						002730
51						302740
		C				002750
	•	90 P	FORMAT (218,	rax, E12.5,F1	(.5)	002760
			END			002770

LISTING OF HIRACL SUBROUTINES

PRECEDENT PARE MANK

SUBROUT INE	HIRACL	74/75	0PT=1		FTN 4.6+428	83/14/78
1	SUBBO	UTINE HI	PACI			066190
(G	W 1 11 11 11 11 11 11 11 11 11 11 11 11				000110
	C ••••••	******	*******		**************	000120 00130
5	•			,		9 060140
		LATES 40	NOCHROMAT	IC ARSORPTION COEFFI	CIENT FOR SINGLE LAVER	* 000150 * 000160
	•					* 060170 * 005180
16	•	USES	HIRACC AL	GORITHM FOR THE LCRE	NTZ PROFILE	- 000190
	•		*******		***********	000200
	C C					00 0 2 2 0 00 0 2 3 0
15	CONHO			ALFA0 (250) , EPP (250)	, HOL (250) ,	000240
	COMMO		(250),REC (8).SF(400	NLF(250)).VSF(225)		00 C 2 S C
	COMMO	in/ pain/	KFILE, KPA	VEL, PO, TEMPO		000270
20	COPFE	IN/NEW/	04, V1, V2,	ID(7),SECANT,PAVE,TA' NLAYER	AFPHHOLID(L) MK(L)	00 0 2 9 0
					EOF, IPANEL, ISTOP, IDATA	
	1AX	M /WXX/	THE PLACE S NO.	. Pungenyatun negeny	vs, nvs, hfmax, hsmax, hvs	00310 00320
25				5,44XVS,NLIHF,NLIHS,: P. DVP.NLIH.NSHIFT.NP	nlipvs, nlo, npi, dvs, evi	000330
.,	COMMO	N/XTIME/	TIME, TIME	DF, TIHONY, TIMPHL	13	000350
				FD1(7),U(7),SCOR(7) 51),XVS(251)		060360 000370
	C				W 48844	066330
20				.02/, NF /201/, NFM4: .08/, NS /201/, NSMA:		960400 960400
•	ATAC O	HWV5/64/	, DXAZ\ 0	.32/, NVS/201/, NVS4	AX/251/	0
	DATA	IENTER/O	/, LIMIN/	250/, NSHIFT/32/; NL	INCALIDATA NPTSAL OF	000430
35	C DATA	SURID /1	OH HIPACI	,	•	000440 06645
•	C			_		906463
	ÎENTE		07 00 (0.	10		074039 084008
40		=(NLIME/ S=(NLIMS	· · · . -			00 .49 (
,	C NOTE	(NXVS/OX	F) IS 16	IND (DXVS/DXS) IS 4		000510
		ID=FL ()AT (NL IMF +4 8	**************************************	VS/DXF)		000520 666530
48	HAXS=	(MAXE/4)	+1			000540
		=(MAYS/4 SHAPEL(X) +1 (F. XS. XVS)			00 05 50 00 05 60
	CALL 10 PPINT		HAOLÍD,NH	DL, TEMPO, TAVĖ, PO, PAVI	E, SCOP, ALFCOR, ALFD1)	060570 000580
50	PRINT	970, SU				00.0590
		FETIMONV	,0=1M9H![T=' [, ([)07x)			386633 000616
	REWIN	O KFILE				00 0620
55		910, KF				00063C 000640
		915, SE 925, PA				00 06 50 00 06 60
	PRINT	930, (4	HOLIG(H),	(K(M),M=1,NMOL)		000670
60	PRINT DVP=0	'940, NV	, 11, 12			û l 068 0 00 06 9 0
	042=	DXS/DXF)				000700
		: (DX V S/DX :=FLOAT (N	180UND) *DA'	/z.		900710 900720
65	BOUNY	5= 90 UND/	2.			388733 866748
U7	ALFHA	X= BOUND/	FLOAT (NHV	5)		000750
		ibolad+1 Ilimp+nsh	IF*-1			060760 000770
	00 50	T=1,HAY	-			000780
70	50 FF(1) DO 60	=0. I=1.MAX	'S			000793 004630
1	60 SF(1)	*C.				0.0416
	70 VSF(1	7=1 .HA) ()=0.	143			06.09.20 06.09.56

,	SUBROUTINE HIRAC	CL 74/74	9PT=1	FTH 4.6+42	0 13/14/76
75	\$ \$		HHOL1, DV, V1, V		#=1,7), #106640 C0660 C0660
41	c	IF CUNITIEFIL			88 88 80 86 8 80
		VRO 7= V1 -80U40	10		800900 80 69 18
	C	ALC - AS+BORND			00 020 00 030
85			AVE T) - (1./XKTE Molid,NWOL,T) EHPO, TAVE, PS, PÁVE, SCOR, ALFGOR,	
90		DO RB M=1, NMOI U(M)=WK(M) TSC(ICNT=9 SUMALF=8.			02 09 8 C 04 69 0 00 16 8 0 00 17 10
	C	KUHNG=C			001030 001030
95	¢	CONTINUE			001040 001050
	Ċ	CONTINUE	TTMERL		0013-60 011070 0010-00
100		IF (IEOF. NE. 0) CALL ROFILE(G) CALL SECOND () TIMPOF=TIMPOF) GO TC 150 NU,S,ALFAO,E TIME)	P/ HOL)	96 9123 0 91130 0 911100 0 91120
105	c	IF(IEOF.NE.8)			001130 011140
20,	6 6			RATURE, PRESSURE, AND COLUMN DE	801150
110		DO 130 IPILO, MEHOL(I) EFORTH(I) #S(I) IF (EFORTH(I)	-U(H)	170	001180 001190 001280 001210
115		ICHT=ICHT+1 ALFL=ALFAU(I)' IF(ALFL-GE-DV) PRINT 945, GNI	60 TC 110	AO(I),ALFL,DV,M	CC1220 CC1230 CC1240 CC1250
120	11r	ALFL=CV HCHNG=NCHNC+1 IF (ALFL-LF-AI PRINT 950, GNI ALFL=ALFMAX		120 AD(I),ALFL,ALFMAX,M	001265 001276 001280 001290 00130
125	120	NCHNG=NPHNG+1 CONTINUE SUMALF=SUMALF RECALF(I)=1./	ALFL		061310 071320 071323 0713240
	\$		-EXP(-GNU(I)/	PP(I]*XKTFAC)*RECALF(3)* XKT})/(1,-EXP(-GNU(1)/XKTO)) 0	GG1350 DC1360 DC1370 QC1380
130	c	CONTINUE CALL CONVENL((XF,XS,XVS)	gnu, ef pp th, re	CALF, HOL, FF, SF, VTF,	011390 001400 001410 011420
135		IF (TPANEL . EQ.	0) GO TO 100		001430 001440
	0 15 0 0	CALL PANEL (F	f, Sf, V SF, KF IL	()	0:1450 001460 001470
240		GALL SECOND (1 KPANEL=KPANEL(IF (1STGP-NE:) END FILE KFILE	1) 60 TO 140		001480 801490 801500 901510
145	160	CONTIME PRINT 95%, TIME IF (ICAT. LE. 0) AV 8LF=SUMALE/ PPINT 940, AV 81	- F,TIMRDE,TIME GO TO 173 FLO87(JPNT)		071520 061530 1541 1541 00150 00410

	SUR ROUT INE	1.WCF	74/74	007-1	FTN 4.6+426	3/14/78
	c_					0 (157 G 0 C 158 D
151	1.7 D C	O RET	UTH			961590
	Ċ					JC 1600 661610
	C		(0 H1) T AM			05 0170
	90	-	HATESK, TAS	103		001630
15				PUT FILE N		001640 001630
	91		MAT (1811	:ANT == F15 PE10.3))	6 31	001660
	98	S FOR	HATE PRE	/S\$ (4B) ••	F12.5/ *0 TEMP(K) ** F11.2)	001676
	•3	13 FOR		COLUMN DENS S. • • • 1P	:ITY(HOLECULES/CH**2) ,	001440
16	•	. TOR	HAT 140 PV	(CH-1) = *F	12.8/*8 V1(CH-1) = *F18.4/*8 V8(CH-1) * *	001700
	•		12.4)		1) = ,F8.4)	061710 061720
	94	T P00	MAT IT			601730
16	5 9 1	IS FOR	PAT IS ++4	********	.++++++++++++++F18.4,E14.3,3F18.6,I5}	001740 001750
	• 1		MAT (1H0,)	LOX, • TIME",	11x, - R-AD-, 4x, -C CNVOL UTION+, 10x, -PANEL -/	001760
	94	FOR	MAT (PO /		TH = *F10.5.	061770 001780
17	n •1	,	MIJ .OA 10.0HIJTAN		• NO. CHAM6ES = •118)	001790
• '	•	END				667000
	SUB ROUTINE (ONVFNL	74/74	0PT=1	FTN 4.6+428	3/14/78
		9 112	SOUTTHE C	ONVENTIENE.	EFORTH. RECALF, NOL, FF, SF, VSF, XF, XS, XVS)	011010
	1		HON WEN	NHOL , XI	D(7) , SEGANT , PAVE, TAVE, PHOLID(7) , WK(7) .	667950
		c		DV. V1. V2.)	M # A A L L	061840
	_	COY	1404 \X208	/LIMIN,ILO	ATAD I POTE I JANE'S POET, TOP VETO POT V. TOP VETO P. INI. R. RAMEN, RA	
	\$	1 4 4				2(100)
		COX	HON /SUR1	/ MAX F, MAXS	s, maxys, nlimf, nlims, nlipys, nlo, nmi, dys, nyys	051670 284170
		403 410	THOUSIGN GN	/1184.14861 U(1). EFDP1)F,TIMCNV,TYMPNL TM(1), RECALF(1), FF(1), SF(1), VSF(1)	301890
1	.0	יומ	HENGION MU	L(1)		001900
_				(1), X\$(1),	, XVS(1)	061910
			IAX=UAAZ\D Fr Zicond			001930
			S-FLOAT (NH			001940
1	5		HF=DVVS/DV			061990 061960
			V7\28V3 = 2H I.Ta.O.II)	HTT GO TO	10	001970
		00	40 TOTLO.	IHI		001980
_		υĒι	- ini = if uot	*4(1)	4.0	002-00
2	20	751	L CPE- RE CAL	F(I) PRATVX		002010
		7](4T= (6 NU (I)	-VFT)/0VVS		052020
			8			005020
,	5	IF.	.J.KAHL)	HANVS! GO	TO 20	00 20 40
•	. •	IL.	45 7=1-1			30236U
			70 50 1H={71HT-R	EUS) 49.		36 23 AC
	•		INF=(ZINTO			065000
3	17	JH	INSULZINTO	COAZ		907100 907113
		79	7= (FL DA T (J	4 I T - 6 S- 11 TM S - 6 SM TM1. 1 T	INT*CONS) *ZRLOPE	065150
		25	- 2V5+ (FLO)	T(JHINF)-2	INT-CONF) - ZSLOPE	002130
		70	14C-CC 05			062140
;	35		LL+24IML= LL+4HIML=			002166
			2 = 2 42 + 2 4 F C	PE		002170
		25	= 25+75L 0P8	t		065780
			A 4= 042 (1A4 = 1			005500
	• c		5=407 (75)			01 22 10
		17	F-APT (2F)	1.5	# wug : 2 7 up t	J(. 2220 DO 2230
		4.5	ディリンションファ(1.15.7= マディ・バ	141430+141 141430+141	**************************************	01 55 40
	45	FF	UF INFF (J	1+0E PTH 1+ X	(F(IZ#)	665548

This page is best quality practicable know cupy furnished to DDG

348 40471	IE COM	ML	74/74	0PT=1			FTN	4.6+426	03/	14/78
	30	CONTIN								002230
	40	CONTIN								062270
50	C		ATACL =	MORE DATA	REQUIRED '	PP IDATA=1	IF NO	HORE DATA	REGUIRED	0022300 002300
	50	CONTY	NE							005330
	60	ILO-IL	A 57+1							065340
75				TIME) +TIME-TIME	•					002360 002360 002370
	C	END								065200